MHB Finding the width of the gorge

  • Thread starter Thread starter daveyc3000
  • Start date Start date
  • Tags Tags
    Width
daveyc3000
Messages
2
Reaction score
0
"Greg and Kristine are on opposite ends of a zip line that crosses a gorge. Greg went across the gorge first, and he's now on a ledge that's 15 m above the bottom of the gorge. Kristen is at the top of a cliff that is 72 m above the bottom of the gorge. Jon is on the ground at the bottom of the gorge, below the zip line. He sees Kristen at a 65 degree angle of elevation and Greg at a 35 degree angle of elevation,. What is the width of the gorge to the nearest metre?"

Answer: 55 m.
 
Mathematics news on Phys.org
Re: need help solving this problem..ims tuck

As Dr, Peterson asked you on FMH: "What have you tried so far?" (Aside from posting the problem on just about any Math forum.)

-Dan
 
Re: need help solving this problem..ims tuck

... and if you're stuck doing that try making a diagram if you haven't done so already. :)
 
Re: need help solving this problem..ims tuck

Nothing but I have found the answer and now understand the problem

Thanks !
 
Re: need help solving this problem..ims tuck

daveyc3000 said:
Nothing but I have found the answer and now understand the problem

Thanks !

I've given this thread a useful title, and now, let's make the content useful to others by actually showing the work.

We are not told where along the bottom of the gorge Jon is, so let's let his distance from the taller side be \(x\). All measures are in meters.

And then we may state:

$$\tan\left(65^{\circ}\right)=\frac{72}{x}$$

$$\tan\left(35^{\circ}\right)=\frac{15}{w-x}$$

The second equation implies:

$$w=15\cot\left(35^{\circ}\right)+x$$

The first equation implies:

$$x=72\cot\left(65^{\circ}\right)$$

Hence:

$$w=15\cot\left(35^{\circ}\right)+72\cot\left(65^{\circ}\right)\approx54.99637148829162$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top