[sp]For $n=1,2,3,4,5,6$, write $P_n = a^n+b^n+c^n+d^n+e^n+f^n$. Also, let $E_n$ be the $n$th
elementary symmetric polynomial in $a,b,c,d,e,f.$ We are told that $$P_1 = -6,\quad P_2 = 534,\quad P_3 = -4662,\quad P_4 = 158886,\quad P_5 = -2104806,\quad P_6 = 51872694.$$ It follows from
Newton's identities that $$\begin{aligned}\phantom{1}E_1 &= P_1 = -6, \\ 2E_2 &= E_1P_1 - P_2 \\ &= 36 - 534 = -498, \text{ so }E_2 = -249, \\ 3E_3 &= E_2P_1 - E_1P_2 + P_3 \\ &= 1494 + 3204 - 4662 = 36, \text{ so }E_3 = 12, \\ 4E_4 &= E_3P_1 - E_2P_2 + E_1P_3 - P_4 \\ &= -72 + 132966 + 27972 - 158886 = 1980, \text{ so }E_4 = 495, \\ 5E_5 &= E_4P_1 - E_3P_2 + E_2P_3 - E_1P_4 + P_5 \\ &= -2970 - 6408 + 1160838 + 953886 - 2104806 = 30, \text{ so }E_5 = -6, \\ 6E_6 &= E_5P_1 - E_4P_2 + E_3P_3 - E_2P_4 + E_1P_5 - P_6 \\ &= 36 - 264330 - 55944 + 39562614 + 12628836 - 51872694 = -1482, \text{ so }E_6 = -247. \end{aligned}$$ Then the equation with roots $a,b,c,d,e,f$ is $x^6 - E_1x^5 + E_2x^4 - E_3x^3 + E_4x^2 - E_5x + E_6 = 0,$ or $x^6 + 6x^5 - 249x^4 - 12x^3 + 495x^2 + 6x - 247 = 0.$ Since $247 = 13\times 19,$ it is not hard to factorise that as $(x^2-1)^2(x-13)(x+19) = 0.$ Thus the numbers $a,b,c,d,e,f$ are (in some order) $1,1,-1,-1,13,-19.$[/sp]