I know it was said not to reply anymore until we hear from OP, and I feel bad about posting, but I must have the same calculus book because I remember this problem from just a few weeks ago. I think I can give a valuable response since I know the format being asked for in this specific case, and I can answer using only what Charanjit should know.
First, think about the pool. It is a cylinder. The height doesn't matter. Taking your cue from the section title, "double integrals in polar coordinates", let the polar element take care of the circle, that is, the base of the pool. What is r, what is theta? (we're talking about a circle here, it's clear what they should be) Now, forget all about the 3 dimensional aspect of the pool and see only a flat surface, the pool from the side. Really force the dimension out of your head. On a regular 2D graph (x,y), translate the height of the water as if you had a FLAT wall of water starting at a depth of 2 feet, and rising up to 7. Did you start at the origin? If you overlay a circle (the base of the pool) you may find that it is better to CENTER your water depth line. Be sure you start at X=-20 and end at 20. Once you do, you can figure out your cartesian equation of the line, and the do the polar integral translation stuff (change x's to rcos(theta) and y's (you shouldn't have any here) to rsin(theta) and don't forget to multiply the whole thing by another r. Integrate the way you should, dr dtheta, and use the upper and lower bounds that are natural for simple polar area problems using a circle with radius 20 centered at the origin that you chose way back before this whole picture got confusing. If your line equation is correct, and you made no other mistakes, you will arrive at the correct answer. I checked in the back of the book, I got it.
I find polar integrals to be visually counterintuitive. My integral never looks like it will give me the answer I'm aiming for, but if you don't let that bother you, and always let round stuff be polar and cornered stuff be Cartesian, it all works out in the end.