Finite difference discretization for systems of higher ODEs

Click For Summary
Finite difference discretization for a system of fourth-order differential equations can be approached by converting them into a set of first-order ODEs. The example provided illustrates how to express three fourth-order equations as twelve first-order equations by defining new variables for each function and its derivatives. This transformation allows for numerical integration using methods like Runge-Kutta or Euler. The key is to ensure that the resulting system is coupled and linear in terms of the derivatives. This method facilitates the application of automatic integrators or custom coding for solutions.
Ojo Saheed
Messages
5
Reaction score
0
How can I use finite difference to discretize a system of fourth order differential equations?
for example:
y(4)+5y(3)-2y''+3y'-y=0
 
Physics news on Phys.org
This doesn't look like a system of 4th order ODEs. It looks like a single 4th order ODE.

Chet
 
Chestermiller said:
This doesn't look like a system of 4th order ODEs. It looks like a single 4th order ODE.

Chet
Thanks for the reply Chet. Actually, I had thought that given an example of one the system of equations might suffice for a demonstration. In any case, a better representation of the system goes thus:
y1(4)=a1y1''+a2y2''+a3y3''+a4y1+a5y2+a6y3+a7
y2(4)=b1y1''+b2y2''+b3y3''+b4y1+b5y2+b6y3+b7
y3(4)=c1y1''+c2y2''+c3y3''+c4y1+c5y2+c6y3+c7
where a, b and c terms are constant coefficients
 
Ojo Saheed said:
Thanks for the reply Chet. Actually, I had thought that given an example of one the system of equations might suffice for a demonstration. In any case, a better representation of the system goes thus:
y1(4)=a1y1''+a2y2''+a3y3''+a4y1+a5y2+a6y3+a7
y2(4)=b1y1''+b2y2''+b3y3''+b4y1+b5y2+b6y3+b7
y3(4)=c1y1''+c2y2''+c3y3''+c4y1+c5y2+c6y3+c7
where a, b and c terms are constant coefficients
If you're trying to solve this numerically, one way it is often done is to convert to a set of first order ODEs. In this particular case, there would be 12 first order ODEs to integrate.

Define,
zj=yj (j = 1,3)
zj+3=y'j (j = 1,3)
zj+6=y''j (j=1,3)
zj+9=y'''j (j=1,3)
Then
z1' = z4
z4' = z7
z7' = z10
z10' = a1z7+a2z8+a3z9+a4z1+a5z2+a6z3+a7
etc.

You end up with 12 coupled first order linear ODEs explicit in the derivatives. You can use an automatic integrator to solve them or use your own coding of Runge Kutta or forward Euler, or backward Euler, or whatever.

Chet
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
7K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
8
Views
6K
  • · Replies 1 ·
Replies
1
Views
453