MHB Finite Extensions - A&F Example 44.2 .... ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Example Finite
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Anderson and Feil - A First Course in Abstract Algebra.

I am currently focused on Ch. 44: Finite Extensions and Constructibility Revisited ... ...

I need some help in fully understanding Example 44.2 ... ...Example 44.2 reads as follows:
https://www.physicsforums.com/attachments/6862

I am trying to fully understand EXACTLY why

$$\{ 1, \sqrt{2}, \sqrt{3}, \sqrt{6} \}$$

is the basis chosen for $$\mathbb{Q} ( \sqrt{2}, \sqrt{3} )$$ ... ... I can see why $$1, \sqrt{2}, \sqrt{3}$$ are in the basis ... and I understand that we need 4 elements in the basis ...

... BUT ... why EXACTLY do we add $$\sqrt{6} = \sqrt{2} \cdot \sqrt{3}$$ ... an element that is already in the set generated by $$1, \sqrt{2}, \sqrt{3}$$ ...

... indeed, what is the rigorous justification for adding $$\sqrt{6}$$ ... why not add some other element ... ... for example, why not add $$\sqrt{12}$$ ... Hope someone can help ...

Peter
 
Physics news on Phys.org
Hi Peter,

It looks like the authors are illustrating the tower law of fields in this example. Check to see if they mentioned the tower law before it. The law states that if $K\subset F \subset L$ is a tower of fields, then $[L : F] = [L : K] [K : F]$. The standard proof of this theorem (in the case $[L : F] < \infty$) shows that if $\{u_1,\ldots, u_m\}$ is a $K$-basis for $F$ and $\{v_1,\ldots v_n\}$ is an $F$-basis for $L$, then the set $\beta = \{u_iv_j: 1\le i \le m, 1\le j \le n\}$ is an $F$-basis for $L$.

Going back to the example, the tower $\Bbb Q \subset \Bbb Q(\sqrt{2})\subset \Bbb Q(\sqrt{2},\sqrt{3})$ is used in the first paragraph. Noting that $\{1, \sqrt{2}\}$ is a $\Bbb Q$-basis for $\Bbb Q(\sqrt{2})$ and $\{1, \sqrt{3}\}$ is a $\Bbb Q(\sqrt{2})$-basis for $\Bbb Q(\sqrt{2},\sqrt{3})$, the set $$\beta = \{1\cdot 1, \sqrt{2}\cdot 1, 1\cdot \sqrt{3}, \sqrt{2}\cdot \sqrt{3}\} = \{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$$ is a $\Bbb Q$-basis for $\Bbb Q(\sqrt{2}, \sqrt{3})$.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top