Finite potential well problem penetration depth

Click For Summary
SUMMARY

The forum discussion centers around the finite potential well problem, specifically the calculation of penetration depth using the formula $$\eta =\frac{\hbar}{\sqrt{2m(V_0-E)}}$$. The original poster (OP) initially calculated a penetration depth of 0.434 nm, which was deemed incorrect by an autograder. The discussion reveals a critical distinction between probability and probability amplitude, leading to confusion regarding the definitions of penetration depth. Ultimately, the correct penetration depth was identified as 0.217 nm, which corresponds to the probability density reducing to 1/e of its initial value at z=0.

PREREQUISITES
  • Understanding of quantum mechanics concepts, particularly wave functions and probability amplitudes.
  • Familiarity with the finite potential well problem and its mathematical formulations.
  • Knowledge of the constants involved, such as Planck's constant (ℏ) and electron mass.
  • Ability to manipulate exponential decay functions in the context of quantum mechanics.
NEXT STEPS
  • Study the derivation of the penetration depth formula $$\eta =\frac{\hbar}{\sqrt{2m(V_0-E)}}$$ in detail.
  • Learn how to calculate probability density from wave functions, specifically using $$|\psi(z)|^2$$.
  • Explore the implications of probability amplitude versus probability in quantum mechanics.
  • Research additional examples of finite potential wells and their applications in quantum mechanics.
USEFUL FOR

Students and educators in quantum mechanics, particularly those focusing on wave functions and potential wells, as well as anyone involved in solving related problems in physics courses.

Ashish Somwanshi
Messages
31
Reaction score
4
Homework Statement
Consider a potential step with a height of V0=0.5eV. An electron is incident from the lower potential side (where the potential energy is set to equal to zero) with an energy E=0.3eV.

Find the penetration depth which is defined as the distance into the barrier region at which the probability decreases to 1/e of its initial value at the potential discontinuity, z=0.

Give your answer in unit of nm. Answers within 5% error will be considered correct.
Relevant Equations
Eta = hket/(2m(Vo-E)), where eta is the penetration depth and hket=1.05×10^(-34)
I don't understand where I went wrong, the formula and calculations which I have attached are correct...please do help if anyone can spot the mistake.
 

Attachments

Physics news on Phys.org
If possible, next time please type in your solution rather than post pictures of handwritten solutions.

Regarding your solution, did you take into account the distinction between "probability" and "probability amplitude"?
 
Formula is independent of probability or probability amplitude and autograder says my answer of 0.434nm is incorrect. I have just substituted values given E and Vo and mass of electron and hket in the above formula for penetration depth in case of finite potential well. What has probability and probability amplitude got to do with the question?? You can yourself check and using the formula you will get value of 0.434nm.
 

Attachments

  • Screenshot_20221007_220858.jpg
    Screenshot_20221007_220858.jpg
    19.7 KB · Views: 132
Ashish Somwanshi said:
Formula is independent of probability or probability amplitude and autograder says my answer of 0.434nm is incorrect. I have just substituted values given E and Vo and mass of electron and hket in the above formula for penetration depth in case of finite potential well. What has probability and probability amplitude got to do with the question?? You can yourself check and using the formula you will get value of 0.434nm.
It is indeed true that if one uses the formula that you provided, one will get the answer you got. This means that you substituted the numbers in the formula correctly. However, what makes you think that the formula $$\eta =\frac{\hbar}{\sqrt{2m(V_0-E)}}$$ gives the length at which the probability drops to ##1/e## of its value at ##z=0##? In your notes you say "It can be derived". Fair enough. Please provide your derivation because I don't believe that the formula is independent from the probability or probability amplitude. The two drop to ##1/e## of their initial values at different distances from the discontinuity. I think you calculated the wrong ##\eta## but without its derivation I cannot be sure. However, it seems that the autograder agrees with me.
 
Ashish Somwanshi said:
Formula is independent of probability or probability amplitude and autograder says my answer of 0.434nm is incorrect. I have just substituted values given E and Vo and mass of electron and hket in the above formula for penetration depth in case of finite potential well. What has probability and probability amplitude got to do with the question?? You can yourself check and using the formula you will get value of 0.434nm.

You have two different definitions of penetration depth.

First definition:

1665168909246.png


Second definition.
1665168979209.png


The first definition is the distance where the probability is reduced by 1/e. The second definition is the distance where the wave function (also known as the probability amplitude) is reduced by 1/e. Your answer is found using the second definition. Maybe they want the answer based on the first definition.
 
TSny said:
The first definition is the distance where the probability is reduced by 1/e. The second definition is the distance where the wave function (also known as the probability amplitude) is reduced by 1/e. Your answer is found using the second definition. Maybe they want the answer based on the first definition.
Yes, the formula used by OP is for the wavefunction, not the probability.
 
kuruman said:
It is indeed true that if one uses the formula that you provided, one will get the answer you got. This means that you substituted the numbers in the formula correctly. However, what makes you think that the formula $$\eta =\frac{\hbar}{\sqrt{2m(V_0-E)}}$$ gives the length at which the probability drops to ##1/e## of its value at ##z=0##? In your notes you say "It can be derived". Fair enough. Please provide your derivation because I don't believe that the formula is independent from the probability or probability amplitude. The two drop to ##1/e## of their initial values at different distances from the discontinuity. I think you calculated the wrong ##\eta## but without its derivation I cannot be sure. However, it seems that the autograder agrees with me.
There was no derivation of this formula in my notes. I found this formula from the net. It seems now I have to provide my original notes for further inspection. As soon as I finish writing my complete notes. I will post it here.
 
Hi @Ashish Somwanshi. Your notes say that ##\eta## is the distance for the wavefunction (##\psi(z)##) to fall from ##\psi (L)## to ##\frac 1e \psi(L)##. That’s where your equation ##\psi(L+\eta)## = ##\frac 1e \psi(L)## comes from.

But the question is asking you to find “the distance into the barrier region at which the probability decreases to 1/e of its value at z=0”.

This distance is not ##\eta##, but is closely related to it.

##\psi(z)## does not give probability. Do you know how to find probability (or more correctly, probability density) from ##\psi##? It’s one of the most basic things you first learn about wave functions.
 
Just square the absolute value of wavefunction it gives the probability density. So how do I find the penetration depth where the probability density reduces to 1/eof its initial value at z=0. There must be some well knownformula? Is it related to transmission probability?
 
  • #10
Inside the step, the wavefunction behaves as ##\psi(z) = A e^{- z/\eta}## where ##A## is a constant and ##z## is the penetration distance into the step. [Edit: Here, ##\eta = \frac{\hbar}{\sqrt{2m(V_0-E))}}##.]

How does ##|\psi(z)|^2## behave?
 
Last edited:
  • #11
TSny said:
Inside the step, the wavefunction behaves as ##\psi(z) = A e^{- z/\eta}## where ##A## is a constant and ##z## is the penetration distance into the step.

How does ##|\psi(z)|^2## behave?
Psi^2(z)=A^2*e^(-2z/eta)
 
  • #12
Ashish Somwanshi said:
Psi^2(z)=A^2*e^(-2z/eta)
Yes. Can you work with this expression to find the answer?
 
  • #13
Ashish Somwanshi said:
There must be some well knownformula? Is it related to transmission probability?
There is no well known formula. You have to derive it yourself. Just think. What is the probability at ##z=0## and at ##z=\eta##? Then write an equation that says that the latter is equal to ##1/e## of the former and solve for ##\eta##.
 
  • #14
@Ashish Somwanshi : In post #11 I was assuming that ##\eta## is the quantity ## \frac{\hbar}{\sqrt{2m(V_0-E))}}##, as given in your handwritten notes. Thus, at ##z = \eta## the wavefunction has decayed to ##\large \frac{1}{e}## of its value at ##z = 0##.
 
  • #15
I got A^2=(1/e)A^2, now how I am supposed to solve for eta?
 
Last edited:
  • #16
I am not getting the value of eta from method suggested by @kuruman
 
  • #17
Isn't this problem already solved at chegg? Can anyone can check it up on chegg and give a hint or method of action?
 
  • #18
If ##\eta = \frac{\hbar}{\sqrt{2m(V_0-E))}}##, then ##\psi(z) = A e^{- z/\eta}## and ##\psi^2(z) = A^2 e^{-2 z/\eta}##.

So, what is ##\psi^2(z)## when ##z = 0##? For what value of ##z## will ##\psi^2(z)## be reduced to 1/e of the value at ##z = 0##?
 
  • #19
TSny said:
If ##\eta = \frac{\hbar}{\sqrt{2m(V_0-E))}}##, then ##\psi(z) = A e^{- z/\eta}## and ##\psi^2(z) = A^2 e^{-2 z/\eta}##.

So, what is ##\psi^2(z)## when ##z = 0##? For what value of ##z## will ##\psi^2(z)## be reduced to 1/e of the value at ##z = 0##?
Thanks extremely, @kuruman and @TSny , I've passed the course and got the correct answer of 0.217nm for penetration depth for which the probability density reduces to 1/2.71828 of its initial value at z=0 of the potential step.
 
  • #20
Ashish Somwanshi said:
I am not getting the value of eta from method suggested by @kuruman
Please stop telling us you got wrong answer and start showing us what you did and how.
Ashish Somwanshi said:
Isn't this problem already solved at chegg? Can anyone can check it up on chegg and give a hint or method of action?
Chegg is for losers and Physics Forums is for learners. Which would you rather be?
Ashish Somwanshi said:
Thanks extremely, @kuruman and @TSny , I've passed the course and got the correct answer of 0.217nm for penetration depth for which the probability density reduces to 1/2.71828 of its initial value at z=0 of the potential step.
You are welcome and congratulations. Now sit back and contemplate what you learned from this entire experience about yourself and how you approach your studies. You don't have to tell us.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 13 ·
Replies
13
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K