mich
- 40
- 0
JesseM said:If you're just talking about closing speed, saying a "different speed relative to the moving frame" is overly confusing--the closing speed of the photon and the end of the apparatus not the same as the speed of the photon in the rest frame of the apparatus, that speed is still c.
I agree
And do you think I did?
At first, I thought you did, but I was wrong.
On both legs I was calculating times and distances in the frame of the observer who sees the apparatus moving at 0.6c.
I agree
Your expression is still wrong--if you're adding the fraction L/[gamma*(c+v)] to the fraction L/[gamma*(c-v)], the two fractions have different denominators, so you can fix that by multiplying both top and bottom of the first fraction by (c-v), and multiplying both top and bottom of the second fraction by (c+v), so the two fractions become [L*(c+v)]/[gamma*(c+v)*(c-v)] and [L*(c-v)]/[gamma*(c+v)*(c-v)]. Then you just add the numerators, which would give [L*(c+v) + L*(c-v)]/[gamma*(c+v)*(c-v)] = L*c / [gamma*(c+v)*(c-v)].
I was not adding those two fractions at all; I was identifying a length contraction for L, making it L/gamma. This over the velocities (c+v) (c-v) gave me t1.
What do you mean by "center"? A frame of reference in SR is an infinite coordinate system assigning coordinates to every point in space and time--do you just mean the origin of the coordinate system, or the physical center of a room?
Physical center
But times are not physical events unless you are talking about readings on a particular set of physical clocks. If there are clocks mounted on the walls which are synchronized in the frame of the walls, and a flash is set off at the midpoint between the two clocks, then all frames will make the same prediction about the reading on each clock at the moment the light from the flash first hits them--they'll all predict that the two clocks read the same time at the moment the light hits them. But this doesn't mean the two events actually happen at the same coordinate time in all frames, some other frame will say that the light actually reached one clock before the other, but in this frame the clocks were out-of-sync by just the right amount so they showed the same readings at the two different times the light hit them.
If an observer on a moving frame can observe an event, coming from what we can claim to be a stationnary frame, as being non simultaneous while the other claims it to be simultaneous, then this is all I'm saying about the M&M experiment observed from a moving frame.
Like I said, a frame is an infinite coordinate system, so talking about "one side of the frame" doesn't really make sense, I'd guess you are probably just using "frame" to mean the physical MM apparatus here.
Yes, and no; along with the moving apparatus, or train, if you like, I see with it, a plane of coordinates having a xyzt axis. This is the reason why I prefer to call it a frame of reference.
Anyway, if you have one light source located on the right end of the horizontal arm and pointed towards the left end (where the horizontal arm intersects with the bottom end of the vertical arm), and another light source located on the top end of the vertical arm and pointed at the bottom end, then if the two sources are turned on in such a way that one frame predicts the light rays reach the intersection point at the same time, then it must be true that all frames predict this, since the meeting of the two rays is a localized event...
After reading over your post, it struck me that you were right. Of coarse it doesn't matter how the observer will measure the light's velocity c in his frame, or xc relative to another moving frame. His
time measurement would indeed be the same for the event in question no matter which frame of reference the observer would use (his or the moving frame's).
Yet, I still could not understand how the the ratio between t1/t2 could be 1 since we are clearly dealing with a length contraction for the horizontal distance and a non contracted distance for the vertical distance.I looked at what I wrote down and could not see anything that could help me see where my error was.
And so I went through your figures and found something questionable. However, I've been out of school for quite a while and so I certainly maybe doing a miscalculation...but this miscalculation seem to work my way.
It concerns your measured length contraction for the moving platform. You wrote down 16.
I got 20* SQRT (1-.6)
= 20 * sqrt (.4)
=20 * .632
= 12.64
So, with this contraction, we continue:
L/(c-v) = 12.64 / .4 = 31.6
L/ (c+v) = 12.64/ 1.6 = 7.9
31.6 + 7.9 = 39.5
Therefore, t1 = 39.5
t2/t1 = 25/39.5
= .6329
The ratio I had calculated was
(c+v) (c-v)
= 1.6 * .4
= .64
Andre