Fluid Dynamics - Momentum Equation for Area Change

Click For Summary

Homework Help Overview

The discussion revolves around the application of the momentum equation in fluid dynamics, specifically in the context of a control volume with a changing area. The original poster expresses confusion regarding a specific term in the momentum equation that accounts for pressure forces acting on the sides of a duct.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants explore the significance of pressure forces on the sides of the duct and their contribution to the momentum equation. Questions arise about the necessity of including these forces and their impact on the overall momentum balance.

Discussion Status

Several participants provide insights into the role of pressure forces, with some elaborating on the mechanics behind the impulse-momentum theorem. The discussion appears to be productive, with participants clarifying concepts and building on each other's contributions.

Contextual Notes

References to specific texts, such as "Transport Phenomena" by Bird, Stewart, and Lightfoot, indicate that participants are drawing from established literature to support their explanations and inquiries.

Magda
Messages
4
Reaction score
0
Hello :)
My question concerns a control volume with a changing area. The momentum equation: p1A1-p2A2 = ṁ(V2-V1) is applied to the control volume.
The image shows the equation found when applying the above momentum equation to the control volume:
upload_2014-12-18_18-19-8.png

The bit I'm having difficulty with is the part in the red box, as I don't see how that part fits in with the original momentum equation. Apparently it accounts for the "average pressure on the side" but what does this actually mean? Any help in understanding this would be much appreciated.

Thanks x
 
Physics news on Phys.org
Welcome to PF!
To understand the term in the red box, think about the fact that each element of area dAs of the side of the pipe will exert a force PsdAs on the fluid, where Ps is the pressure at the element of area. Note that this force has a a nonzero horizontal component.
 

Attachments

  • Flow.png
    Flow.png
    2.6 KB · Views: 719
Last edited:
TSny said:
Welcome to PF!
To understand the term in the red box, think about the fact that each element of area dAs of the side of the pipe will exert a force PsdAs on the fluid, where Ps is the pressure at the element of area. Note that this force has a a nonzero horizontal component.

Thank you for your response :)
I’m still slightly confused… why do I need to account for the force acting on the sides? Is it because the non-zero horizontal force component will affect the final force (term p2A2 in the momentum equation)?
 
The impulse-momentum theorem of mechanics states that the x-component of the net impulse acting on a system is equal to the change in x-component of the total momentum of the system. So, the change in x-component of momentum is due to the x-component of the net force from all forces acting on the system. The walls of the pipe exert a nonzero x-component of force on the fluid that needs to be included.
 
  • Like
Likes   Reactions: Magda
TSny said:
The impulse-momentum theorem of mechanics states that the x-component of the net impulse acting on a system is equal to the change in x-component of the total momentum of the system. So, the change in x-component of momentum is due to the x-component of the net force from all forces acting on the system. The walls of the pipe exert a nonzero x-component of force on the fluid that needs to be included.
ok, that makes sense. Thank you so much! x
 
To elaborate on what TSny said, let x represent the axial position along the duct and let R(x) represent the radius of the duct at location x. The surface area of the duct upon which the pressure is acting between x and x + dx is given by ##2\pi R \sqrt{(dR)^2+(dx)^2}=2\pi Rdx \sqrt{1+(\frac{dR}{dx})^2}##. The pressure acts perpendicular to the wall of the duct (Pascal's law), so the horizontal component of the pressure is given by ##p\frac{dR}{\sqrt{(dR)^2+(dx)^2}}##. By Newton's 3rd law, the pressure force that the fluid exerts on the duct wall is equal and opposite to the pressure force that the duct wall exerts on the fluid. So the axial component of the duct wall force acting on the fluid in the control volume is given by:
\left(2\pi R \sqrt{(dR)^2+(dx)^2}\right)\left(p\frac{dR}{\sqrt{(dR)^2+(dx)^2}}\right)=p(2\pi R dR)=pdA

Chet
 
  • Like
Likes   Reactions: Magda
Chestermiller said:
To elaborate on what TSny said, let x represent the axial position along the duct and let R(x) represent the radius of the duct at location x. The surface area of the duct upon which the pressure is acting between x and x + dx is given by ##2\pi R \sqrt{(dR)^2+(dx)^2}=2\pi Rdx \sqrt{1+(\frac{dR}{dx})^2}##. The pressure acts perpendicular to the wall of the duct (Pascal's law), so the horizontal component of the pressure is given by ##p\frac{dR}{\sqrt{(dR)^2+(dx)^2}}##. By Newton's 3rd law, the pressure force that the fluid exerts on the duct wall is equal and opposite to the pressure force that the duct wall exerts on the fluid. So the axial component of the duct wall force acting on the fluid in the control volume is given by:
\left(2\pi R \sqrt{(dR)^2+(dx)^2}\right)\left(p\frac{dR}{\sqrt{(dR)^2+(dx)^2}}\right)=p(2\pi R dR)=pdA

Chet
That was very useful. Thank you Chet :) x
 
Can I ask where is this from? I have a similar problem.
 
Dusan Stan said:
Can I ask where is this from? I have a similar problem.
See the chapter in Transport Phenomena by Bird, Stewart, and Lightfoot covering Macroscopic Momentum Balances.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
Replies
2
Views
1K
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 16 ·
Replies
16
Views
3K
Replies
0
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 35 ·
2
Replies
35
Views
4K