MHB Focusing on the I in I don't want to do this anymore

Click For Summary
The discussion revolves around the integration of the function x^4/(4-x^2) using partial fraction decomposition. The initial steps involve rewriting the integral and applying polynomial long division, leading to the expression involving the logarithmic terms. Participants emphasize the importance of clean notation to avoid errors in calculations, particularly regarding the application of constants in the integration process. There is a correction regarding the distribution of the constant '16', which is not applied to all terms as initially implied. The final result is confirmed to be a combination of logarithmic and polynomial terms, showcasing the integration process's complexity.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
w8.5.2
$$ \int \frac{x^4}{(4-x^2)} dx
\implies -\int\frac{x^4}{(x^2-4)} dx
$$
by division
$$\displaystyle\int\dfrac{16}{x^2-4}+x^2+4 \ dx
\implies 16\int \frac{1}{(x+2)(x-2)}+ x^2+4 \ dx $$
$$\frac{1}{(x+2)(x-2)}=\frac{A}{x+2}+\frac{B}{x-2}
\displaystyle = -\dfrac{1}{4\left(x+2\right)}+\dfrac{1}{4\left(x-2\right)}
$$
so now we have
$$-\frac{1}{4}\int\dfrac{1}{x+2} dx
\ \ + \ \frac{1}{4}\int\dfrac{1}{x-2} dx
\ \ +\int {x}^{2} \ dx
+ \int 4 \ dx $$
just seeing if going down the right trail...
 
Last edited:
Physics news on Phys.org
karush said:
w8.5.2
$$ \int \frac{x^4}{(4-x^2)} dx
\implies -\int\frac{x^4}{(x^2-4)} dx
$$
by division
$$\displaystyle\int\dfrac{16}{x^2-4}+x^2+4 \ dx
\implies 16\int \frac{1}{(x+2)(x-2)}+ x^2+4 \ dx $$
$$\frac{1}{(x+2)(x-2)}=\frac{A}{x+2}+\frac{B}{x-2}
\displaystyle = -\dfrac{1}{4\left(x+2\right)}+\dfrac{1}{4\left(x-2\right)}
$$
so now we have
$$-\frac{1}{4}\int\dfrac{1}{x+2} dx
\ \ + \ \frac{1}{4}\int\dfrac{1}{x-2} dx
\ \ +\int {x}^{2} \ dx
+ \int 4 \ dx $$
just seeing if going down the right trail...

Yes it's fine, keep going :)
 
$$
\displaystyle
16\left[
-\frac{\ln\left({\left| x-2 \right|}\right)}{4}
+\frac{\ln\left({\left| x+2 \right|}\right)}{4} \right]
+\frac{{x}^{3}}{3}
+4x
$$
Simplify
$$
\displaystyle
4\ln\left({\left| x+2 \right|}\right)
- 4\ln\left({\left| x-2 \right|}\right)
+\frac{{x}^{3}}{3}
+4x
+C
$$
I hope😍
 
As you originally negated everything in the first step, I think you need the negative of this as your answer.
 
What was inside the brackets got turned around making the leading term positive
 
Prove It said:
Yes it's fine, keep going :)

No, it's not fine. The '16' is not applied to $x^2+4$ as the notation used implies. Sorry to nitpick but clean notation helps to avoid errors and improves marks. In my opinion it is an area were the OP could stand to make a substantial improvement. :)
 
greg1313 said:
No, it's not fine. The '16' is not applied to $x^2+4$ as the notation used implies. Sorry to nitpick but clean notation helps to avoid errors and improves marks. In my opinion it is an area were the OP could stand to make a substantial improvement. :)

I'm not sure why an eight month old thread has been bumped in the first place, I'm sure in that time the OP has already completed the problem, and probably the course it was from :P
 
$\textsf{Evaluate using decomposition}$
\begin{align}
I_{02}&=\int \frac{x^4}{(4-x^2)} dx \\
&=-4\int \frac{1}{x+2} \, dx +4\int\frac{1}{x-2}+\int x^2 \, dx + 4\int 1 \, dx \\
\\
&=-4\ln{|x+2|}+4\ln{|x-2|}+\frac{x^3}{3}+4x+C
\end{align}

How dis...:cool:
 
karush said:
$\textsf{Evaluate using decomposition}$
\begin{align}
I_{02}&=\int \frac{x^4}{(4-x^2)} dx \\
&=-4\int \frac{1}{x+2} \, dx +4\int\frac{1}{x-2}+\int x^2 \, dx + 4\int 1 \, dx \\
\\
&=-4\ln{|x+2|}+4\ln{|x-2|}+\frac{x^3}{3}+4x+C
\end{align}

How dis...:cool:

Let's just end this...

$\displaystyle \begin{align*} \int{ \frac{x^4}{4 - x^2} \, \mathrm{d}x } &= -\int{ \frac{x^4}{x^2 - 4} \, \mathrm{d}x } \\ &= -\int{ \frac{ x^4 - 4\,x^2 + 4\,x^2 }{ x^2 - 4 } \, \mathrm{d}x } \\ &= -\int{ \left( \frac{ x^4 - 4\,x^2 }{ x^2 - 4 } + \frac{ 4\,x^2 }{ x^2 - 4 } \right) \,\mathrm{d}x } \\ &= -\int{ \left[ \frac{ x^2 \, \left( x^2 - 4 \right) }{x^2 - 4} + \frac{4\,x^2}{ x^2 - 4 } \right] \, \mathrm{d}x } \\ &= - \int{ \left( x^2 + \frac{4\,x^2}{x^2 - 4} \right) \,\mathrm{d}x } \\ &= -\int{ \left( x^2 + \frac{4\,x^2 - 16 + 16}{ x^2 - 4} \right) \,\mathrm{d}x } \\ &= -\int{ \left( x^2 + \frac{4\,x^2 - 16}{x^2 - 4} + \frac{16}{x^2 - 4} \right) \,\mathrm{d}x } \\ &= -\int{ \left[ x^2 + \frac{4\,\left( x^2 - 4 \right) }{x^2 - 4} + \frac{16}{x^2 - 4} \right] \,\mathrm{d}x } \\ &= -\int{ \left( x^2 + 4 + \frac{16}{x^2 - 4} \right) \,\mathrm{d}x } \\ &= -\int{ \left[ x^2 + 4 + \frac{16}{\left( x - 2 \right) \left( x + 2 \right) } \right] \,\mathrm{d}x } \end{align*}$

Now applying partial fractions:

$\displaystyle \begin{align*} \frac{A}{x - 2} + \frac{B}{x + 2} &\equiv \frac{16}{\left( x - 2 \right) \left( x + 2 \right) } \\ A \,\left( x + 2 \right) + B \,\left( x - 2 \right) &\equiv 16 \end{align*}$

Let $\displaystyle \begin{align*} x = -2 \end{align*}$ to find $\displaystyle \begin{align*} -4\,B = 16 \implies B = -4 \end{align*}$.

Let $\displaystyle \begin{align*} x = 2 \end{align*}$ to find $\displaystyle \begin{align*} 4\,A = 16 \implies A = 4 \end{align*}$, giving

$\displaystyle \begin{align*} -\int{ \left[ x^2 + 4 + \frac{16}{ \left( x - 2 \right) \left( x + 2 \right) } \right] \,\mathrm{d}x } &= -\int{ \left( x^2 + 4 + \frac{4}{x - 2} - \frac{4}{x + 2} \right) \,\mathrm{d}x } \\ &= - \left( \frac{x^3}{3} + 4\,x + 4\ln{ \left| x - 2 \right| } - 4\ln{ \left| x + 2 \right| } \right) + C \\ &= 4\ln{ \left| x + 2 \right| } - 4\ln{ \left| x - 2 \right| } - \frac{x^3}{3} - 4\,x + C \end{align*}$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K