Focusing on the I in I don't want to do this anymore

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Expansion Integral
Click For Summary
SUMMARY

The discussion focuses on evaluating the integral $$\int \frac{x^4}{(4-x^2)} dx$$ using partial fraction decomposition and integration techniques. Participants detail the steps involved, including rewriting the integral as $$-\int\frac{x^4}{(x^2-4)} dx$$ and applying decomposition to simplify the expression. The final result is confirmed as $$4\ln\left({\left| x+2 \right|}\right) - 4\ln\left({\left| x-2 \right|}\right) + \frac{x^3}{3} + 4x + C$$, with emphasis on the importance of clean notation to avoid errors.

PREREQUISITES
  • Understanding of integral calculus, specifically techniques for integration by parts and partial fractions.
  • Familiarity with logarithmic properties and their application in integration.
  • Knowledge of polynomial long division as it applies to rational functions.
  • Experience with symbolic manipulation in mathematical expressions.
NEXT STEPS
  • Study the method of partial fraction decomposition in detail.
  • Learn about integration techniques involving logarithmic functions.
  • Explore polynomial long division and its applications in calculus.
  • Practice solving integrals involving rational functions to reinforce understanding.
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integration techniques, and anyone looking to improve their skills in evaluating complex integrals.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
w8.5.2
$$ \int \frac{x^4}{(4-x^2)} dx
\implies -\int\frac{x^4}{(x^2-4)} dx
$$
by division
$$\displaystyle\int\dfrac{16}{x^2-4}+x^2+4 \ dx
\implies 16\int \frac{1}{(x+2)(x-2)}+ x^2+4 \ dx $$
$$\frac{1}{(x+2)(x-2)}=\frac{A}{x+2}+\frac{B}{x-2}
\displaystyle = -\dfrac{1}{4\left(x+2\right)}+\dfrac{1}{4\left(x-2\right)}
$$
so now we have
$$-\frac{1}{4}\int\dfrac{1}{x+2} dx
\ \ + \ \frac{1}{4}\int\dfrac{1}{x-2} dx
\ \ +\int {x}^{2} \ dx
+ \int 4 \ dx $$
just seeing if going down the right trail...
 
Last edited:
Physics news on Phys.org
karush said:
w8.5.2
$$ \int \frac{x^4}{(4-x^2)} dx
\implies -\int\frac{x^4}{(x^2-4)} dx
$$
by division
$$\displaystyle\int\dfrac{16}{x^2-4}+x^2+4 \ dx
\implies 16\int \frac{1}{(x+2)(x-2)}+ x^2+4 \ dx $$
$$\frac{1}{(x+2)(x-2)}=\frac{A}{x+2}+\frac{B}{x-2}
\displaystyle = -\dfrac{1}{4\left(x+2\right)}+\dfrac{1}{4\left(x-2\right)}
$$
so now we have
$$-\frac{1}{4}\int\dfrac{1}{x+2} dx
\ \ + \ \frac{1}{4}\int\dfrac{1}{x-2} dx
\ \ +\int {x}^{2} \ dx
+ \int 4 \ dx $$
just seeing if going down the right trail...

Yes it's fine, keep going :)
 
$$
\displaystyle
16\left[
-\frac{\ln\left({\left| x-2 \right|}\right)}{4}
+\frac{\ln\left({\left| x+2 \right|}\right)}{4} \right]
+\frac{{x}^{3}}{3}
+4x
$$
Simplify
$$
\displaystyle
4\ln\left({\left| x+2 \right|}\right)
- 4\ln\left({\left| x-2 \right|}\right)
+\frac{{x}^{3}}{3}
+4x
+C
$$
I hope😍
 
As you originally negated everything in the first step, I think you need the negative of this as your answer.
 
What was inside the brackets got turned around making the leading term positive
 
Prove It said:
Yes it's fine, keep going :)

No, it's not fine. The '16' is not applied to $x^2+4$ as the notation used implies. Sorry to nitpick but clean notation helps to avoid errors and improves marks. In my opinion it is an area were the OP could stand to make a substantial improvement. :)
 
greg1313 said:
No, it's not fine. The '16' is not applied to $x^2+4$ as the notation used implies. Sorry to nitpick but clean notation helps to avoid errors and improves marks. In my opinion it is an area were the OP could stand to make a substantial improvement. :)

I'm not sure why an eight month old thread has been bumped in the first place, I'm sure in that time the OP has already completed the problem, and probably the course it was from :P
 
$\textsf{Evaluate using decomposition}$
\begin{align}
I_{02}&=\int \frac{x^4}{(4-x^2)} dx \\
&=-4\int \frac{1}{x+2} \, dx +4\int\frac{1}{x-2}+\int x^2 \, dx + 4\int 1 \, dx \\
\\
&=-4\ln{|x+2|}+4\ln{|x-2|}+\frac{x^3}{3}+4x+C
\end{align}

How dis...:cool:
 
karush said:
$\textsf{Evaluate using decomposition}$
\begin{align}
I_{02}&=\int \frac{x^4}{(4-x^2)} dx \\
&=-4\int \frac{1}{x+2} \, dx +4\int\frac{1}{x-2}+\int x^2 \, dx + 4\int 1 \, dx \\
\\
&=-4\ln{|x+2|}+4\ln{|x-2|}+\frac{x^3}{3}+4x+C
\end{align}

How dis...:cool:

Let's just end this...

$\displaystyle \begin{align*} \int{ \frac{x^4}{4 - x^2} \, \mathrm{d}x } &= -\int{ \frac{x^4}{x^2 - 4} \, \mathrm{d}x } \\ &= -\int{ \frac{ x^4 - 4\,x^2 + 4\,x^2 }{ x^2 - 4 } \, \mathrm{d}x } \\ &= -\int{ \left( \frac{ x^4 - 4\,x^2 }{ x^2 - 4 } + \frac{ 4\,x^2 }{ x^2 - 4 } \right) \,\mathrm{d}x } \\ &= -\int{ \left[ \frac{ x^2 \, \left( x^2 - 4 \right) }{x^2 - 4} + \frac{4\,x^2}{ x^2 - 4 } \right] \, \mathrm{d}x } \\ &= - \int{ \left( x^2 + \frac{4\,x^2}{x^2 - 4} \right) \,\mathrm{d}x } \\ &= -\int{ \left( x^2 + \frac{4\,x^2 - 16 + 16}{ x^2 - 4} \right) \,\mathrm{d}x } \\ &= -\int{ \left( x^2 + \frac{4\,x^2 - 16}{x^2 - 4} + \frac{16}{x^2 - 4} \right) \,\mathrm{d}x } \\ &= -\int{ \left[ x^2 + \frac{4\,\left( x^2 - 4 \right) }{x^2 - 4} + \frac{16}{x^2 - 4} \right] \,\mathrm{d}x } \\ &= -\int{ \left( x^2 + 4 + \frac{16}{x^2 - 4} \right) \,\mathrm{d}x } \\ &= -\int{ \left[ x^2 + 4 + \frac{16}{\left( x - 2 \right) \left( x + 2 \right) } \right] \,\mathrm{d}x } \end{align*}$

Now applying partial fractions:

$\displaystyle \begin{align*} \frac{A}{x - 2} + \frac{B}{x + 2} &\equiv \frac{16}{\left( x - 2 \right) \left( x + 2 \right) } \\ A \,\left( x + 2 \right) + B \,\left( x - 2 \right) &\equiv 16 \end{align*}$

Let $\displaystyle \begin{align*} x = -2 \end{align*}$ to find $\displaystyle \begin{align*} -4\,B = 16 \implies B = -4 \end{align*}$.

Let $\displaystyle \begin{align*} x = 2 \end{align*}$ to find $\displaystyle \begin{align*} 4\,A = 16 \implies A = 4 \end{align*}$, giving

$\displaystyle \begin{align*} -\int{ \left[ x^2 + 4 + \frac{16}{ \left( x - 2 \right) \left( x + 2 \right) } \right] \,\mathrm{d}x } &= -\int{ \left( x^2 + 4 + \frac{4}{x - 2} - \frac{4}{x + 2} \right) \,\mathrm{d}x } \\ &= - \left( \frac{x^3}{3} + 4\,x + 4\ln{ \left| x - 2 \right| } - 4\ln{ \left| x + 2 \right| } \right) + C \\ &= 4\ln{ \left| x + 2 \right| } - 4\ln{ \left| x - 2 \right| } - \frac{x^3}{3} - 4\,x + C \end{align*}$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K