MHB For those familiar with the WKB method

  • Thread starter Thread starter Poirot1
  • Start date Start date
  • Tags Tags
    Method Wkb
Poirot1
Messages
243
Reaction score
0
let x be the parameter in some interval and let lambda tend to infinity. Should I treat x as of the same order as constants, i.e x=O(1)?
 
Physics news on Phys.org
Poirot said:
let x be the parameter in some interval and let lambda tend to infinity. Should I treat x as of the same order as constants, i.e x=O(1)?

Hi Poirot, :)

I am sorry but I don't understand your question. Are you taking about the WKB approximation method? Can you please elaborate further?

Kind Regards,
Sudharaka.
 
Last edited:
Sudharaka said:
Hi Poirot, :)

I am sorry but I don't understand your question. Are you taking about the WKB approximation method? Can you please elaborate further?

Kind Regards,
Sudharaka.

This is indeed what I am talking about Sudharaka. I have two questions for you- one which can be best illustrated by an example. For large t, find wkb approximation of

$y''-y(t^{2}x^{2}+tx^{-1})=0$ for x not zero

We do this by substituting y=exp(...) (I'm sure you're familiar with this) and finding dominant balances. In the second dominant balance equation, I had potential driving terms t and t/x, and I thought both should be retained in the dominant balance as they are both of O(t). But the answer was wrong and it was clear that I should only retain t.
Why?

My second (and original) question is if I have to choose between x and a constant between retained in the dominant balance, ought I to retain both? I.e. x=O(1)
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top