Force of spring equation problems

In summary, the mass is 6.00kg, the spring constant is 145N/m, and the acceleration is 1.80m/s. The force of the spring is equal to the negative of the spring constant times the displacement, which in this case is equal to -0.0745m. The spring displacement is a vector, but in this problem, we are being asked for the magnitude of the displacement, which is a positive number. Therefore, the correct answer is -x.
  • #1
Elementard
4
1
Homework Statement
A light spring having a force constant of 145 N/m is used to pull a 6.00 kg sled on a horizontal frictionless ice rink. The sled has an acceleration of 1.80 m/s2.

By how much does the spring stretch if it pulls on the sled horizontally?
Relevant Equations
Fs= -kx
Fp= ma
m=6.00Kg
K=145N/m
a=1.80m/s

Fp=Fs
ma=-kx
(6)(1.8)=-(145)x
x=-0.0745m

I’m just wondering why I see some people make Fs=kx instead of -kx? isn’t the force of a spring a vector?
 
Physics news on Phys.org
  • #2
It is a vector. Say the sled is being pulled by the spring to the right. The spring stretches to the left which means that the displacement of the end of the spring is negative. One can formally write it as a one-dimensional vector in the negative direction using unit vector notation ##\mathbf{x}=-|\mathbf{x}|~\mathbf{\hat x}##. Then one can write a vector equation for the force, $$\mathbf{F}=-k\mathbf{x}=-k(-|\mathbf{x}|~\mathbf{\hat x})=+k|\mathbf{x}|~\mathbf{\hat x}.$$ The negative sign in the one-dimensional vector equation, ##F=-kx## indicates the direction of ##F## relative to ##x##. In this example with the spring to the right of the sled, if vector ##x## is to the left (spring extension) , vector ##F## is to the right; if vector ##x## is to the right (spring compression), vector ##F## is to the left.
 
Last edited:
  • Like
Likes Elementard, topsquark and TSny
  • #3
Thank you so much! This actually makes sense. :bow:👍
 
  • Like
Likes kuruman
  • #4
I just noticed that your answer is a negative number. You have solved for the displacement of the end of the spring which is a vector. This is incorrect. The problem is asking you by how much the spring stretches. This is a distance, i.e. the magnitude of the displacement, and a positive number.
 
  • Like
Likes Elementard and topsquark
  • #5
kuruman said:
I just noticed that your answer is a negative number. You have solved for the displacement of the end of the spring which is a vector. This is incorrect. The problem is asking you by how much the spring stretches. This is a distance, i.e. the magnitude of the displacement, and a positive number.
I would put it a little differently. "Extension" could be thought of as a distance or as a displacement.

Fs=-kx assumes the force being exerted by the spring at end A and the displacement of end A are being measured with positive in the same direction.
In this case, we are being asked for the extension, which is in the opposite direction to the force. Therefore the required answer is -x.
 
  • Like
Likes Elementard and topsquark
Back
Top