Yitzach
- 60
- 0
Homework Statement
A point charge q is situated a large distance r from a neutral atom of polarizability \alpha. Find the force of attraction between them.
Homework Equations
\vec{E}_{mono}(r)=\frac{q}{4\pi\epsilon_0r^2}\hat{r}
\vec{E}_{dip}(r,\theta)=\frac{p}{4\pi\epsilon_0r^3}(2\cos\theta\hat{r}+\sin\theta\hat{\theta})
\vec{p}=\alpha\vec{E}
The Attempt at a Solution
\vec{E}_{mono}(r)=\frac{q}{4\pi\epsilon_0r^2}\hat{r}
\vec{p}=\alpha\vec{E}
\vec{p}=\frac{\alpha q}{4\pi\epsilon_0r^2}\hat{r}
\vec{E}_{dip}(r,\theta)=\frac{p}{4\pi\epsilon_0r^3}(2\cos\theta\hat{r}+\sin\theta\hat{\theta})
\vec{E}_{dip}(r,\pi)=\frac{\alpha q}{16\pi^2\epsilon^2_0r^5}(-2\hat{r})
\vec{E}_{dip}(r,\pi)=-\frac{\alpha q}{8\pi^2\epsilon^2_0r^5}\hat{r}
\vec{F}=q\vec{E}
\vec{F}=-\frac{\alpha q^2}{8\pi^2\epsilon^2_0r^5}\hat{r}
The result I got was unexpected because that is a repulsive force.
Do I need to go about a longer way or did I mess it up somewhere?
Last edited: