MHB Form of symmetric matrix of rank one

i_a_n
Messages
78
Reaction score
0
The question is:Let $C$ be a symmetric matrix of rank one. Prove that $C$ must have the form $C=aww^T$, where $a$ is a scalar and $w$ is a vector of norm one.(I think we can easily prove that if $C$ has the form $C=aww^T$, then $C$ is symmetric and of rank one. But what about the opposite direction...that is what we need to prove. How to prove this?)
 
Physics news on Phys.org
ianchenmu said:
The question is:Let $C$ be a symmetric matrix of rank one. Prove that $C$ must have the form $C=aww^T$, where $a$ is a scalar and $w$ is a vector of norm one.(I think we can easily prove that if $C$ has the form $C=aww^T$, then $C$ is symmetric and of rank one. But what about the opposite direction...that is what we need to prove. How to prove this?)
If $C$ has rank 1 then the range space of $C$ is 1-dimensional. Let $w$ be a unit (column) vector in this subspace, then $Cw$ must be a scalar multiple of $w$, say $Cw = aw$. Since $C$ is symmetric, $w^TC = (Cw)^T = aw^T.$ Notice also that $w^Tw = 1$ since $w$ is a unit vector.

For any other column vector $x$, $Cx$ must also be a scalar multiple of $w$, say $Cx = \lambda_xw$, which we could equally well write $Cx = w\lambda_x$ since $\lambda$ is a scalar. Then $$\lambda_x = \lambda_x w^Tw = w^T(\lambda_xw) = w^T(Cx) = (w^TC)x = aw^Tx,$$ hence $Cx = w\lambda_x = w(aw^Tx) = aww^Tx$. That holds for all vectors $x$, therefore $C = aww^T.$
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top