- #1
- 33
- 0
L is the operator. Lx=x'(t)+u(t) x(t) =0. Provided that x(t0)=x0.
Before writing the matrix. The book express it out in equations.
x(t0)==x0
x(t1)-x(t0)+Δt u(t0) x(t0)==0
x(t2)-x(t1)+Δt u(t1) x(t1)==0
...
Euler's method is x(t0)+Δt f[x0,t0], right?
so where did the x'(t) from the original ODE goes?
Before writing the matrix. The book express it out in equations.
x(t0)==x0
x(t1)-x(t0)+Δt u(t0) x(t0)==0
x(t2)-x(t1)+Δt u(t1) x(t1)==0
...
Euler's method is x(t0)+Δt f[x0,t0], right?
so where did the x'(t) from the original ODE goes?