Formula to extend a line in 3d (opposite of midpoint formula)

  • Context: MHB 
  • Thread starter Thread starter LMHmedchem
  • Start date Start date
  • Tags Tags
    3d Formula Line
Click For Summary
SUMMARY

The discussion focuses on extending a line in 3D space defined by two points using a mathematical formula. The correct approach involves using a vector representation of the line, where additional points can be generated by manipulating a parameter \( t \). The formula provided is \( \vec{v}=\left[\begin{array}{c}x_1+\left(x_2-x_1\right)t \\ y_1+\left(y_2-y_1\right)t \\ z_1+\left(z_2-z_1\right)t \end{array}\right] \). In Excel, this is implemented as \( =A2+(A4-A2)*\$D\$2 \), where \( D2 \) is the multiplier that determines the extension distance.

PREREQUISITES
  • Understanding of 3D coordinate systems
  • Familiarity with vector mathematics
  • Basic knowledge of Excel formulas
  • Concept of multipliers in mathematical equations
NEXT STEPS
  • Research vector mathematics in 3D space
  • Learn how to implement mathematical formulas in Excel
  • Explore the implications of using different multiplier values in line extensions
  • Investigate the midpoint formula and its applications in 3D geometry
USEFUL FOR

Mathematicians, data analysts, and anyone working with 3D modeling or graphical representations who needs to extend lines or calculate additional points in three-dimensional space.

LMHmedchem
Messages
20
Reaction score
0
Hello,

I have some simple 3d data like,

Code:
point 1: x1 = 5.8573375, y1 = -4.17885, z1 = 2.338175
point 2: x2 = -3.26132, y2 = 1.28276, z2 = 0.931583

I need to be able to extend the line from point 1 through point 2 to some additional distance.

There are a few posts on stackexchange, but they are all in c++ code and I couldn't get results in excel that look correct. Maybe it's just too late in the day. What I found was more or less,

Code:
x3 = x2 * M - x1, y3 = y2 * M - y1, z3 = z2 * M - z1 where M is a multiplier

For the example I gave above, this gives me a point that is no where near anything that resembles an extension of the line from point 1 to point 2.

Code:
x3 = 2.92866875, y3 = 4.82023, z3 = -1.8723835

Maybe I just got the parenthesis wrong or something lame like that. This seems like it should be very simple but I'm not sure if I need to find the slope first or if something like the above will work.

Can someone point me to the correct formula?

Thanks,

LMHmedchem
 
Mathematics news on Phys.org
If you have a line in 3 dimensions specified by the two points:

$$\left(x_1,y_1,z_1\right),\,\left(x_2,y_2,z_2\right)$$

Then a vector along the line can be given by:

$$\vec{v}=\left[\begin{array}{c}x_1+\left(x_2-x_1\right)t \\ y_1+\left(y_2-y_1\right)t \\ z_1+\left(z_2-z_1\right)t \end{array}\right]$$

You can then use the parameter $t$ to generate additional points on the line. :)
 
Thanks, that worked easily.

In excel, this looks like,

for the new x coordinate (x3)
Code:
=A2+(A4-A2)*$D$2

where,
A2 is the cell containing x1
A4 is the cell containing x2
$D$2 is cell containing the multiplier

If the multiplier is < 1.0, the new point will fall between point 1 and point 2. A multiplier value of 0.5 would give you the same result as using the midpoint formula. The multiplier must be > 1.0 for point 3 to be beyond point 2. I would guess that if the multiplier is negative, point 3 would occur on the line from point 1 to point 2 but before point 1 but I haven't confirmed that.

I have a similar question but I will put that in a new thread because it is likely a more complex solution.

Thanks again,

LMHmedchem
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
Replies
7
Views
2K
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
8
Views
5K