Formulating and Proving DeMorgan's Laws in Set Theory

  • Thread starter Thread starter FeynmanIsCool
  • Start date Start date
  • Tags Tags
    Laws
FeynmanIsCool
Messages
121
Reaction score
0
Hello,
I am working through Munkres Topology (not for a class). It asks the reader to formulate and proove DeMorgans Laws. I am new to proofs, so I was wondering if this is what the book is asking. Any help would be appreciated!

assume two sets
\, \,\begin{Bmatrix}<br /> A-(B\cup C)\,<br /> \end{Bmatrix}\, and\, \begin{Bmatrix}<br /> (A-B)\cup (A-C)<br /> \end{Bmatrix}\, \, \,

\forall x\in (B\cup C), x\in B\, or\, x\in C \, or \, both

\therefore \, \, \forall x\, \in\begin{Bmatrix}<br /> A-(B\cup C)\,<br /> \end{Bmatrix}, x\in A

Now,

\forall x\in (A-B), \, x\in A\, \, and\, \, \forall x\in (A-C), \, \, x\in A

\Rightarrow \forall x\in \begin{Bmatrix}<br /> (A-B)\cap (A-C), \, x \in A<br /> \end{Bmatrix}x \in AThus: \begin{Bmatrix}<br /> A-(B \cup C)<br /> \end{Bmatrix}<br /> =\begin{Bmatrix}<br /> (A-B)\cap (A-C)<br /> \end{Bmatrix}

Does this proove DeMorgans Law (just the first one)? Formally?

Thanks again!
 
Last edited:
Physics news on Phys.org
If x\in"A- anything" then x\in A. You haven't said anything about x NOT being in the other sets.
 
so I also need to state: x\notin B and x\notin C ?
So if I tagged those statements onto the proof after I state x\in A, then its good?

Im just a little confused, by saying:

\forall x\in (B\cup C), x\in B\, or\, x\in C \, or \, both

\therefore \, \, \forall x\, \in\begin{Bmatrix}<br /> A-(B\cup C)\,<br /> \end{Bmatrix}, x\in A

Aren't I stating that I am taking out all elements of B and C, thus all elements left are elements of A?
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top