Four charges equal in magnitude form a square

Click For Summary
SUMMARY

The discussion focuses on calculating the electric field at the center of a square formed by four equal charges of 20.0 microC placed at its corners. The correct distance from each charge to the center is determined to be 0.127m, not 0.180m as initially assumed. The electric field is a vector quantity, requiring vector addition of the fields from each charge, rather than simple arithmetic addition of magnitudes. The final electric field at the center is derived from the contributions of the charges, with opposite charges canceling each other out.

PREREQUISITES
  • Understanding of electric fields and Coulomb's law
  • Familiarity with vector addition in physics
  • Knowledge of charge interactions (positive and negative)
  • Basic algebra for calculations involving electric field equations
NEXT STEPS
  • Study vector addition of electric fields in different charge configurations
  • Learn about the implications of charge polarity on electric field direction
  • Explore the concept of electric field lines and their representation
  • Investigate the effects of varying charge magnitudes on electric field strength
USEFUL FOR

Students in physics, particularly those studying electromagnetism, educators teaching electric field concepts, and anyone interested in understanding charge interactions in electrostatics.

abm77
Messages
13
Reaction score
0

Homework Statement



Four charges equal in magnitude of 20.0 microC are placed on the four corners of a square with side length 0.180m. Determine the electric field at the centre of the square.

(-q) ---------- (+q)
l l
l l
l l
(+q)----------(+q)

1 --------------- 2

3-----------------4

Formatting messes up the square but you get the point.

Homework Equations



ɛ = kq / r
ɛ = delta V / r

The Attempt at a Solution



I tried just adding up the combinations of each charge after calculating ɛ = kq / r for each. I didn't feel confident this was the correct way to do it, but no answer or solution was given.

ɛ1 = k(-0.00002) / 0.180 = -1.00 x 10^6
ɛ2&3&4 = k(0.00002) / 0.180 = 1.00 x 10^6

ɛtotal = ɛ1 + ɛ2 + ɛ3 +ɛ4
= -1.0 x 10^6 + 3(1.0 x 10^6)
= 2.0 x 10^6
 
Last edited:
Physics news on Phys.org
Please show your work in more detail. There is no way we can tell if you did it right or wrong based on your post.
 
Orodruin said:
Please show your work in more detail. There is no way we can tell if you did it right or wrong based on your post.
Updated my solution to show my full work.
 
First of all, the distance from the charges to the center is not 0.18 m.

Second, the electric field is a vector. You cannot simply add the magnitudes of the fields from each charge. You need to add the field vectors as a vector addition, i.e., using both magnitude and direction.
 
Orodruin said:
First of all, the distance from the charges to the center is not 0.18 m.

Second, the electric field is a vector. You cannot simply add the magnitudes of the fields from each charge. You need to add the field vectors as a vector addition, i.e., using both magnitude and direction.

Right.

So I found the length to the centre from each corner to be 0.127m.

So if I were to add them as vectors would charge 2 and 3 cancel each other out, and I would be left to add charges 1 and 4 together since they are opposite charges?
 
Correct.
 
Orodruin said:
Correct.

Awesome thanks.

One last thing, is there a rule for determining which way the electric field vector is going? Like will it be towards 1 (-q) or 4 (+q)?
 
The field is pointing in the direction in which the force on a positive test charge at the given position would point. Thus, the field from a negative charge points towards it (the negative charge) and the field of a positive charge away from it (the positive charge).
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 6 ·
Replies
6
Views
985
  • · Replies 29 ·
Replies
29
Views
5K
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K