MHB Four Non-Linear Simultaneous Equations

Wilmer
Messages
303
Reaction score
0
4 equations, 4 unknowns:

\[\frac{u(r^2 - u^2)}{r^2 + u^2}=156~~~~~~~~~~(1)\]
\[\frac{v(r^2 - v^2)}{r^2 + v^2} = 96~~~~~~~~~(2)\]
\[\frac{w(r^2 - w^2)}{r^2 + w^2} = 63~~~~~~~~~~(3)\]
\[\frac{315uvw + 24336vw + 9216uw + 3969uv}{2r} = 943488~~~~~~~~~(4)\]

Who can solve that mess?
 
Last edited by a moderator:
Mathematics news on Phys.org
Wilmer said:
4 equations, 4 unknowns:

u(r^2 - u^2) / (r^2 + u^2) = 156 [1]
v(r^2 - v^2) / (r^2 + v^2) = 96 [2]
w(r^2 - w^2) / (r^2 + w^2) = 63 [3]
(315uvw + 24336vw + 9216uw + 3969uv) / (2r) = 943488 [4]

Who can solve that mess?

Hi Wilmer, :)

If you are only concerned about real roots these are the solutions Maxima gives. Note that the first one is only an approximate.\[u=-166.2623906705539,v=-110.8238636363636,r=-29.66972878390201,w=-81.98732171156894\]

\[u=260,v=104,r=520,w=65\]

Kind Regards,
Sudharaka.
 
Sudharaka said:
\[u=260,v=104,r=520,w=65\]
Hi Suds!
Yes, that's correct: I had this one solved,
but by brute force.

All I'm trying to do is find a way to solve
this "by hand".
 
Wilmer said:
Hi Suds!
Yes, that's correct: I had this one solved,
but by brute force.

All I'm trying to do is find a way to solve
this "by hand".
I think that I may have been part way towards finding Sudharaka's solution "by hand". I was looking at the function $f(x) = \dfrac{x(1-x^2)}{1+x^2}.$ For positive values of $x$, this has a maximum value of 3/10, which occurs when $x=1/2.$

Your equation (1) says that $f(u/r) = 156/r.$ This tells you that $156/r\leqslant 3/10$, or $r\geqslant 520.$ Also, the value $r=520$ can only occur if $u=520/2=260$. I was going to explore this further, to see if there were values of $v$ and $w$ compatible with those values of $r$ and $u$, but Sudharaka got there first.
 
Background info, in case useful:
Code:
              C
 
 
        D                     E
              U          V                    
                   M
                   
                   W
                   
B                  F                        A
Acute triangle ABC: M is circumcenter.
U, V and W are the incenters of triangles BCM, ACM and ABM respectively:
and DM, EM and FM are the perpendicular heights.

NOT GIVENS: a = BC = 624, b = AC = 960, c = AB = 1008, r = 520 = AM=BM=CM.
NOT GIVENS: u = UM = 260, v = VM = 104, w = WM = 65.
GIVENS: d = DU = 156, e = EV = 96, f = FW = 63.

Work to set up the 4 equations:
a = 2dr / u , b = 2er / b , c = 2fr / w

from triangleBCM: u(r^2 - u^2) / (r^2 + u^2) = d [1]
from triangleACM: v(r^2 - v^2) / (r^2 + v^2) = e [2]
from triangleABM: w(r^2 - w^2) / (r^2 + w^2) = f [3]

area(BCM + ACM + ABM) = areaABC; leads to :
[uvw(d + e + f) + vwd^2 + uwe^2 + uvf^2] / (2r) = def [4]

Inserting the givens gives us:
u(r^2 - u^2) / (r^2 + u^2) = 156 [1]
v(r^2 - v^2) / (r^2 + v^2) = 96 [2]
w(r^2 - w^2) / (r^2 + w^2) = 63 [3]
(315uvw + 24336vw + 9216uw + 3969uv) / (2r) = 943488 [4]

I'm simply curious as to the possibility of solving these 4 simultaneous equations.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top