Four Non-Linear Simultaneous Equations

Click For Summary

Discussion Overview

The discussion revolves around solving a set of four non-linear simultaneous equations involving four unknowns: u, v, w, and r. The equations are derived from geometric relationships in an acute triangle and involve ratios related to the triangle's incenter and circumcenter. Participants explore methods for finding solutions, both numerically and analytically.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • Sudharaka provides numerical solutions for the equations, noting that one solution is approximate.
  • Another participant mentions having solved the equations "by brute force" and expresses interest in finding a manual solution.
  • A participant discusses the function \( f(x) = \frac{x(1-x^2)}{1+x^2} \) and its maximum value, relating it to the constraints on r and u.
  • Background information is provided about the geometric context of the equations, including the roles of the incenters and circumcenter of the triangle.
  • Equations are derived from the relationships between the triangle's sides and the incenter distances, with specific values given for d, e, and f.

Areas of Agreement / Disagreement

Participants do not reach a consensus on a method for solving the equations. While some numerical solutions are presented, there is ongoing exploration of analytical approaches, and no definitive solution is established.

Contextual Notes

The discussion includes various assumptions about the values of the variables and the relationships between them, which may not be universally accepted. The mathematical steps leading to the equations are not fully resolved, and the exploration of potential solutions remains open-ended.

Wilmer
Messages
303
Reaction score
0
4 equations, 4 unknowns:

\[\frac{u(r^2 - u^2)}{r^2 + u^2}=156~~~~~~~~~~(1)\]
\[\frac{v(r^2 - v^2)}{r^2 + v^2} = 96~~~~~~~~~(2)\]
\[\frac{w(r^2 - w^2)}{r^2 + w^2} = 63~~~~~~~~~~(3)\]
\[\frac{315uvw + 24336vw + 9216uw + 3969uv}{2r} = 943488~~~~~~~~~(4)\]

Who can solve that mess?
 
Last edited by a moderator:
Physics news on Phys.org
Wilmer said:
4 equations, 4 unknowns:

u(r^2 - u^2) / (r^2 + u^2) = 156 [1]
v(r^2 - v^2) / (r^2 + v^2) = 96 [2]
w(r^2 - w^2) / (r^2 + w^2) = 63 [3]
(315uvw + 24336vw + 9216uw + 3969uv) / (2r) = 943488 [4]

Who can solve that mess?

Hi Wilmer, :)

If you are only concerned about real roots these are the solutions Maxima gives. Note that the first one is only an approximate.\[u=-166.2623906705539,v=-110.8238636363636,r=-29.66972878390201,w=-81.98732171156894\]

\[u=260,v=104,r=520,w=65\]

Kind Regards,
Sudharaka.
 
Sudharaka said:
\[u=260,v=104,r=520,w=65\]
Hi Suds!
Yes, that's correct: I had this one solved,
but by brute force.

All I'm trying to do is find a way to solve
this "by hand".
 
Wilmer said:
Hi Suds!
Yes, that's correct: I had this one solved,
but by brute force.

All I'm trying to do is find a way to solve
this "by hand".
I think that I may have been part way towards finding Sudharaka's solution "by hand". I was looking at the function $f(x) = \dfrac{x(1-x^2)}{1+x^2}.$ For positive values of $x$, this has a maximum value of 3/10, which occurs when $x=1/2.$

Your equation (1) says that $f(u/r) = 156/r.$ This tells you that $156/r\leqslant 3/10$, or $r\geqslant 520.$ Also, the value $r=520$ can only occur if $u=520/2=260$. I was going to explore this further, to see if there were values of $v$ and $w$ compatible with those values of $r$ and $u$, but Sudharaka got there first.
 
Background info, in case useful:
Code:
              C
 
 
        D                     E
              U          V                    
                   M
                   
                   W
                   
B                  F                        A
Acute triangle ABC: M is circumcenter.
U, V and W are the incenters of triangles BCM, ACM and ABM respectively:
and DM, EM and FM are the perpendicular heights.

NOT GIVENS: a = BC = 624, b = AC = 960, c = AB = 1008, r = 520 = AM=BM=CM.
NOT GIVENS: u = UM = 260, v = VM = 104, w = WM = 65.
GIVENS: d = DU = 156, e = EV = 96, f = FW = 63.

Work to set up the 4 equations:
a = 2dr / u , b = 2er / b , c = 2fr / w

from triangleBCM: u(r^2 - u^2) / (r^2 + u^2) = d [1]
from triangleACM: v(r^2 - v^2) / (r^2 + v^2) = e [2]
from triangleABM: w(r^2 - w^2) / (r^2 + w^2) = f [3]

area(BCM + ACM + ABM) = areaABC; leads to :
[uvw(d + e + f) + vwd^2 + uwe^2 + uvf^2] / (2r) = def [4]

Inserting the givens gives us:
u(r^2 - u^2) / (r^2 + u^2) = 156 [1]
v(r^2 - v^2) / (r^2 + v^2) = 96 [2]
w(r^2 - w^2) / (r^2 + w^2) = 63 [3]
(315uvw + 24336vw + 9216uw + 3969uv) / (2r) = 943488 [4]

I'm simply curious as to the possibility of solving these 4 simultaneous equations.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K