A Fourier optics model of a 4f system

AI Thread Summary
In a 4f optical system with two lenses, L1 (focal length 910mm) and L2 (focal length 40mm) spaced at a distance of f1 + f2, the resulting irradiance pattern can be determined through Fourier transforms. The Fraunhofer diffraction integral is applied to the incoming field at L1, yielding the transformed field U_in at f1. This transformed field serves as input for L2, where the inverse Fraunhofer diffraction integral is used to convert back to real space while accounting for L2's focal length. After this inverse transform, the field at L2's focal plane can be analyzed using the thin lens equation to find the final image plane. This approach effectively utilizes the Fourier optics model to analyze the system's behavior.
Skaiserollz89
Messages
9
Reaction score
0
TL;DR Summary
I am attempting to model a 4f system in matlab. However, before I do I want to ensure I am understanding the fourier optics involved in doing so.
In my system I am trying to represent two lenses. L1 with focal length f1=910mm and the other lens, L2 with focal length f2=40mm. These lenses are space such that there is a distance of f1+f2 between the lenses. I have a unit amplitude plane wave incident on L1. My goal is to find the resulting irradiance pattern after passage through both lenses.

I think I only need to perform a couple fourier transforms. For L1, I will use the Fraunhofer diffraction integral on the incoming field u_in(x,y) with z=f1. This results in the transform field U_in(fx,fy) at f1. From here I'm not sure what to do. For lens L2 do I need to do an inverse version of the Fraunhofer diffraction integral to get out of frequency space while simultaneously accounting for the focal length of the 2nd lens f2? Any advice would be much appreciated!
 
Science news on Phys.org


The Fourier optics model of a 4f system is a powerful tool for analyzing optical systems with multiple lenses. In your system, you have two lenses, L1 and L2, with focal lengths of 910mm and 40mm respectively. These lenses are spaced such that there is a distance of f1+f2 between them. To find the resulting irradiance pattern after passage through both lenses, you are correct in saying that you will need to perform a couple of Fourier transforms.

First, for L1, you will need to use the Fraunhofer diffraction integral on the incoming field u_in(x,y) with z=f1. This will result in the transformed field U_in(fx,fy) at f1. This transformed field will then act as the input for L2. However, in order to properly account for the focal length of L2, you will need to use the inverse version of the Fraunhofer diffraction integral. This will allow you to transform the field back into real space and account for the focal length of L2 at the same time.

Once you have performed the inverse transform, you will have the field at the focal plane of L2. From here, you can use the standard thin lens equation to determine the field at the final image plane. This will give you the resulting irradiance pattern after passage through both lenses.

In summary, to find the resulting irradiance pattern in your system, you will need to perform two Fourier transforms and use the inverse version of the Fraunhofer diffraction integral to properly account for the focal length of L2. This will allow you to accurately analyze the behavior of your 4f system and determine the resulting irradiance pattern.
 
After my surgery this year, gas remained in my eye for a while. The light air bubbles appeared to sink to the bottom, and I realized that the brain was processing the information to invert the up/down/left/right image transferred to the retina. I have a question about optics and ophthalmology. Does the inversion of the image transferred to the retina depend on the position of the intraocular focal point of the lens of the eye? For example, in people with farsightedness, the focal point is...
Thread 'A quartet of epi-illumination methods'
Well, it took almost 20 years (!!!), but I finally obtained a set of epi-phase microscope objectives (Zeiss). The principles of epi-phase contrast is nearly identical to transillumination phase contrast, but the phase ring is a 1/8 wave retarder rather than a 1/4 wave retarder (because with epi-illumination, the light passes through the ring twice). This method was popular only for a very short period of time before epi-DIC (differential interference contrast) became widely available. So...

Similar threads

Back
Top