- 1,001
- 11
Homework Statement
Find Fourier coefficients of the periodic function whose template is x(t) where the Fourier Transform of x(t) is X(f) = (1-f^2)^2 where \left|f\right|<1 and period T_0= 4.
Homework Equations
FC=\hat x_T(k,T_0)=\sum_{k=-\infty}^\infty\frac{1}{T_0}X\left(k/T_0\right)
The Attempt at a Solution
I know the expression for FC only applies with the Fourier transform X(f) has no limit on bandwidth, so something different needs to be done. We've had nothing in lectures about finding the Fourier series for this situation (i.e. where FT is zero outside of a specific frequency range), so I'm not sure where to go from here.
There is a short section in the book about waveform sampling stating that for T=1/(2f_c):
x(t) = T\sum_{k=-\infty}^\infty x(kT) \frac{sin 2 \pi f_c (t-kT)}{\pi(t-kT)} which I think is just saying:
T\sum_{k=-\infty}^\infty x(kT) \frac{sin 2 \pi f_c (t-kT)}{\pi(t-kT)} <==> (1-f^2)^2 where |f|<1 and f_c=1, but I don't immediately see how that's useful. Any tips or suggestions?