Fourier series of this scale and shift of triangle wave

  • Thread starter Thread starter zenterix
  • Start date Start date
  • Tags Tags
    Fourier series
Click For Summary
The discussion centers on the Fourier series representation of a triangle wave function, specifically addressing the function g(t) derived from a shifted triangle wave. Initially, there was confusion regarding the presence of both sine and cosine terms in the Fourier series of g(t), which is an odd function. It was clarified that the original equation for the triangle wave's Fourier series incorrectly included even terms, necessitating a correction to only sum over odd n values. The final expression for g(t) was confirmed to consist solely of sine terms, aligning with its odd nature. The resolution highlights the importance of accurately identifying the terms in the Fourier series to avoid misinterpretations.
zenterix
Messages
774
Reaction score
84
Homework Statement
Consider the periodic function of period ##2\pi##
Relevant Equations
$$g(t)=\begin{cases} t\ \ \ \ \ -\frac{\pi}{2}<t<\frac{\pi}{2} \\ \pi-t\ \ \ \ \ \frac{\pi}{2}<t<\frac{3\pi}{2} \end{cases}\tag{1}$$
This function seems to be ##tr\left (t+\frac{\pi}{2}\right )-\frac{\pi}{2}## where ##tr(t)## is the triangle wave function.

$$tr(t)=|t|\ \ \ \ \ -\frac{\pi}{2}<t<\frac{\pi}{2}\tag{2}$$

1710150127225.png


##tr## has Fourier series

$$tr(t)=\frac{\pi}{2}-\frac{4}{\pi}\sum\limits_{n=1}^\infty \frac{\cos{(nt)}}{n^2}\tag{2a}$$

Thus

$$g(t)=tr\left (t+\frac{\pi}{2}\right )-\frac{\pi}{2}\tag{3}$$

$$-\frac{4}{\pi}\sum\limits_{n=1}^\infty \frac{\cos{\left (n\left (t+\frac{\pi}{2}\right ) \right )}}{n^2}\tag{4}$$

Now

$$\cos{\left ( nt +n\frac{\pi}{2} \right )}=\cos{(nt)}\cos{\left (\frac{n\pi}{2}\right )}-\sin{(nt)}\sin{\left (\frac{n\pi}{2}\right )}\tag{5}$$

$$\sum\limits_{n=1}^\infty \cos{\left ( nt +n\frac{\pi}{2} \right )} = (-\sin{t})+(-\cos{2t})+(\sin{3t})+(\cos{4t})+(-\sin{5t})+(-\cos{6t})+\ldots\tag{6}$$

$$=\sum\limits_{k=0}^\infty (-1)^{k+1}\sin{(2k+1)t}+\sum\limits_{k=1}^\infty (-1)^k \cos{(2kt)}\tag{7}$$

If we sub this expression into (4) then

$$g(t)=-\frac{4}{\pi}\left ( \sum\limits_{k=0}^\infty (-1)^{k+1}\frac{\sin{(2k+1)t}}{(2k+1)^2}+\sum\limits_{k=1}^\infty (-1)^k \frac{\cos{(2kt)}}{(2k)^2} \right )\tag{8}$$

If the calculations are correct so far, my question is why this Fourier series has both cosine and sine terms when ##g## is odd.
 
Last edited:
Physics news on Phys.org
I think I need to take a break from studying today.

The answer to my question is a silly mistake.

Equation (2a) is incorrect. The summation is only over odd ##n##

$$tr(t)=\frac{\pi}{2}-\frac{4}{\pi}\sum\limits_{n\ \text{odd}} \frac{\cos{(nt)}}{n^2}\tag{2a}$$

Thus, equation (4) is also only over odd ##n##

$$-\frac{4}{\pi}\sum\limits_{n\ \text{odd}}^\infty \frac{\cos{\left (n\left (t+\frac{\pi}{2}\right ) \right )}}{n^2}\tag{4}$$

and in (5), since ##n## is odd then the first term on the rhs is zero

$$\cos{\left ( nt +n\frac{\pi}{2} \right )}=-\sin{(nt)}\sin{\left (\frac{n\pi}{2}\right )}\tag{5}$$

$$=\sum\limits_{k=0}^\infty (-1)^{k+1} \sin{((2k+1)t)}\tag{7}$$

Hence

$$g(t)=-\frac{4}{\pi}\left ( \sum\limits_{k=0}^\infty (-1)^{k+1}\frac{\sin{(2k+1)t}}{(2k+1)^2} \right )\tag{8}$$
 
  • Like
Likes FactChecker

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K