Graduate Fourier Transform for 3rd kind of boundary conditions?

Click For Summary
The discussion focuses on a modified Fourier transform that accommodates third kind boundary conditions, as described in course notes from the University of Waterloo. The formula for the transform is presented, along with its operational property related to the second derivative. The original poster is seeking literature that provides a detailed derivation of this equation and its applications. A suggestion is made that the formula can be derived using integration by parts, prompting a question about the poster's attempts at deriving it themselves. The conversation highlights the need for resources that explain this modified Fourier transform in depth.
Atr cheema
Messages
67
Reaction score
0
I am studying online course notes from University of Waterloo on 'Analytical mathematics in geology' in which the author describes a 'modified Fourier transform' which can be used to incorporate 3rd kind of boundary conditions. The formula is
## \Gamma \small[ f(x) \small] = \bar{f}(a) = \int_{0}^{\infty } f(x) [a \cos(ax) + h\sin(ax)] dx ##
where $$ \Gamma $$ be the Fourier operator.
with operational property

##\Gamma [\frac{d^2f}{dx^2}] = -a^2 \bar{f}(a) - a [ \frac{df}{dx}|_{x=0} - hf|_{x=0} ]##

I am trying to look for the detailed derivation of this equation in literature but have not found so far! Can anybody tell me in which book I can find detailed derivation of this formula and possibly with application?
 
Physics news on Phys.org
Atr cheema said:
I am studying online course notes from University of Waterloo on 'Analytical mathematics in geology' in which the author describes a 'modified Fourier transform' which can be used to incorporate 3rd kind of boundary conditions. The formula is
## \Gamma \small[ f(x) \small] = \bar{f}(a) = \int_{0}^{\infty } f(x) [a \cos(ax) + h\sin(ax)] dx ##
where $$ \Gamma $$ be the Fourier operator.
with operational property

##\Gamma [\frac{d^2f}{dx^2}] = -a^2 \bar{f}(a) - a [ \frac{df}{dx}|_{x=0} - hf|_{x=0} ]##

I am trying to look for the detailed derivation of this equation in literature but have not found so far! Can anybody tell me in which book I can find detailed derivation of this formula and possibly with application?

The formula is straightforward to derive it by adopting your definition of ##\Gamma## for ##d^2/dx^2## and using integration by parts twice. How you tried to derive the formula yourself?
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K