Undergrad Fourier transform of a function in spherical coordinates

Click For Summary
The discussion focuses on the Fourier transform of functions in spherical coordinates, specifically the relationship between Fourier conjugates in this basis. It highlights the need for correct coordinate transformations when transitioning from Cartesian to spherical coordinates, emphasizing the importance of including the appropriate volume element in integrals. Participants point out mistakes in the initial transformation and integration setup, particularly regarding the dimensions of the differential elements. The conversation concludes with a clarification on the relationship between the function in spherical coordinates and its Fourier transform, questioning if a specific condition holds true. Overall, the thread underscores the complexities of performing Fourier transforms in spherical coordinates and the common pitfalls encountered.
redtree
Messages
335
Reaction score
15
TL;DR
I am trying to understand the relationship between Fourier conjugate bases in spherical coordinates
I am trying to understand the relationship between Fourier conjugates in the spherical basis. Thus for two functions ##f(\vec{x}_3)## and ##\hat{f}(\vec{k}_3)##, where

\begin{equation}

\begin{split}

\hat{f}(\vec{k}_3) &= \int_{\mathbb{R}^3} e^{-2 \pi i \vec{k}_3 \cdot \vec{x}_3} f(\vec{x}_3 d\vec{k}_3

\end{split}

\end{equation}

where ##\vec{x}_3 = [x_1,x_2,x_3]## and ##\vec{k}_3 = [k_1,k_2,k_3]##
In spherical 3-space coordinates,

\begin{equation}

\begin{split}

\hat{f}(\varrho, \xi_1, \xi_2) &= \int_{0}^{\infty} \int_{0}^{1} \int_{0}^{1/2} e^{-2 \pi i (\varrho r + \xi_1 \theta_2 + \xi_2 \theta_2)} f(r,\theta_1,\theta_2) dr d\theta_1 d\theta_2

\end{split}

\end{equation}

where ##\vec{x}_3 = [r,\theta_1,\theta_2]## and ##\vec{k}_3 = [\varrho,\xi_1,\xi_2]##
Thus, for a function ##\hat{f}\left( \big(\vec{k}_3\big)^2 \right)##, where in spherical coordinates ##\big(\vec{k}_3\big)^2 = \big( \varrho \big)^2##,

\begin{equation}

\begin{split}

\hat{f}\left( \big(\vec{k}_3\big)^2 \right) &= \hat{f}\left(\big( \varrho \big)^2 \right)

\\

&= \int_{0}^{\infty} e^{-2 \pi i \varrho r} f(r^2) dr

\end{split}

\end{equation}

such that ##\hat{f}\left( \big(\vec{k}_3\big)^2 \right)## is independent of ##\theta_1## and ##\theta_2##. Is that correct? Am I missing something?
 
Physics news on Phys.org
How are ##\theta_1## and ##\theta_2## defined?
 
##0 \leq \theta_1 \leq 1/2 ##, such that ## 0 \leq 2 \pi \theta_1 \leq \pi##
## 0 \leq \theta_2 \leq 1##, such that ## 0 \leq 2 \pi \theta_2 \leq 2 \pi##
 
I’m not sure I really understand, but in any case you definitely did your coordinate transformation wrong. Show us how you did it.
 
\begin{equation}
\begin{split}
x_1 &= r \sin{2 \pi \theta_1} \cos{2 \pi \theta_2}
\\
x_2 &= r \sin{2 \pi \theta_1} \sin{2 \pi \theta_2}
\\
x_3 &= r \cos{2 \pi \theta_1}
\end{split}
\end{equation}
where ##r \geq 0##, ##0 \leq \theta_1, \leq \frac{1}{2}## and ##0 \leq \theta_2 \leq 1##
 
Of course your first integral should be over physical space, not wave-vector space. That integral should include (using your notation I think) ##d\vec{x}_3## which has dimensions of volume. However, when you transformed the coordinates you somehow have ##dr d\theta_1 d\theta_2## which has dimensions of length. That should clue you in that it cannot possibly be correct. Have you transformed integrals from Cartesian to spherical coordinates before?
 
redtree said:
\begin{equation}
\begin{split}
x_1 &= r \sin{2 \pi \theta_1} \cos{2 \pi \theta_2}
\\
x_2 &= r \sin{2 \pi \theta_1} \sin{2 \pi \theta_2}
\\
x_3 &= r \cos{2 \pi \theta_1}
\end{split}
\end{equation}
where ##r \geq 0##, ##0 \leq \theta_1, \leq \frac{1}{2}## and ##0 \leq \theta_2 \leq 1##
Where is the mistake in the coordinate transformation?
 
These equations

redtree said:
\begin{equation}
\begin{split}
x_1 &= r \sin{2 \pi \theta_1} \cos{2 \pi \theta_2}
\\
x_2 &= r \sin{2 \pi \theta_1} \sin{2 \pi \theta_2}
\\
x_3 &= r \cos{2 \pi \theta_1}
\end{split}
\end{equation}
where ##r \geq 0##, ##0 \leq \theta_1, \leq \frac{1}{2}## and ##0 \leq \theta_2 \leq 1##
Are fine, but when you used them to change the variables of integration you did most of it wrong. For example ##d\vec{x}_3## should transform (if I did the math right) to ##4\pi^2 \, r^2 \, \sin(2\pi\theta_1) \, dr \, d\theta_1 \, d\theta_2##. Also
$$
\vec{k}_3\cdot \vec{x}_3 = k_1\, r\, \sin{2 \pi \theta_1} \cos{2 \pi \theta_2} + k_2\, r\, \sin{2 \pi \theta_1} \sin{2 \pi \theta_2} + k_3\, r\, \cos{2 \pi \theta_1}
$$

This is standard stuff for changing coordinates in multiple integrals, as learned in a standard calculus sequence. Have you learned multivariable calculus?

jason
 
  • Like
Likes redtree
jasonRF said:
These equationsAre fine, but when you used them to change the variables of integration you did most of it wrong. For example ##d\vec{x}_3## should transform (if I did the math right) to ##4\pi^2 \, r^2 \, \sin(2\pi\theta_1) \, dr \, d\theta_1 \, d\theta_2##. Also
$$
\vec{k}_3\cdot \vec{x}_3 = k_1\, r\, \sin{2 \pi \theta_1} \cos{2 \pi \theta_2} + k_2\, r\, \sin{2 \pi \theta_1} \sin{2 \pi \theta_2} + k_3\, r\, \cos{2 \pi \theta_1}
$$

This is standard stuff for changing coordinates in multiple integrals, as learned in a standard calculus sequence. Have you learned multivariable calculus?

jason
Got it. Thanks!
 
  • #10
such that,
\begin{equation}
\begin{split}
\hat{f}(\varrho,\xi_1,\xi_2) &= \int_{0}^{1} \int_{0}^{1/2} \int_{0}^{\infty} \text{Exp}\left[-2 \pi i \varrho r \big(\cos{2 \pi \theta_1 } \cos{2 \pi \xi_1 } + \cos{2 \pi (\theta_2 - \xi_2) } \sin{2 \pi \theta_1 } \sin{2 \pi \xi_1 }\big) \right]
\\
&4\pi^2 \, r^2 \, \sin(2\pi\theta_1) \, dr \, d\theta_1 \, d\theta_2
\end{split}
\end{equation}
 
  • #11
Does it remain true that if ##f\left( (\vec{x}_3)^2 \right) = r^2##, then ##f(\vec{x}_3) = f(r)##, where ##f(r) = \mathscr{F}^{-1}[\hat{f}(\varrho)]##?
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K