Fourier transform of a function in spherical coordinates

Click For Summary
SUMMARY

The discussion focuses on the Fourier transform of functions in spherical coordinates, specifically the relationship between Fourier conjugates in the spherical basis. The transformation from Cartesian to spherical coordinates is analyzed, revealing that the integration variables must be correctly transformed to maintain dimensional consistency. The correct volume element for spherical coordinates is identified as ##4\pi^2 \, r^2 \, \sin(2\pi\theta_1) \, dr \, d\theta_1 \, d\theta_2##. Participants emphasize the importance of understanding multivariable calculus for accurate coordinate transformations.

PREREQUISITES
  • Understanding of Fourier transforms and their properties
  • Familiarity with spherical coordinates and their applications
  • Knowledge of multivariable calculus, particularly coordinate transformations
  • Experience with integration in multiple dimensions
NEXT STEPS
  • Study the properties of Fourier transforms in spherical coordinates
  • Learn about the derivation and application of the Jacobian in coordinate transformations
  • Explore advanced topics in multivariable calculus, focusing on integration techniques
  • Investigate the implications of Fourier conjugates in physical applications
USEFUL FOR

Mathematicians, physicists, and engineers engaged in signal processing, wave mechanics, or any field requiring the application of Fourier analysis in spherical coordinates.

redtree
Messages
335
Reaction score
15
TL;DR
I am trying to understand the relationship between Fourier conjugate bases in spherical coordinates
I am trying to understand the relationship between Fourier conjugates in the spherical basis. Thus for two functions ##f(\vec{x}_3)## and ##\hat{f}(\vec{k}_3)##, where

\begin{equation}

\begin{split}

\hat{f}(\vec{k}_3) &= \int_{\mathbb{R}^3} e^{-2 \pi i \vec{k}_3 \cdot \vec{x}_3} f(\vec{x}_3 d\vec{k}_3

\end{split}

\end{equation}

where ##\vec{x}_3 = [x_1,x_2,x_3]## and ##\vec{k}_3 = [k_1,k_2,k_3]##
In spherical 3-space coordinates,

\begin{equation}

\begin{split}

\hat{f}(\varrho, \xi_1, \xi_2) &= \int_{0}^{\infty} \int_{0}^{1} \int_{0}^{1/2} e^{-2 \pi i (\varrho r + \xi_1 \theta_2 + \xi_2 \theta_2)} f(r,\theta_1,\theta_2) dr d\theta_1 d\theta_2

\end{split}

\end{equation}

where ##\vec{x}_3 = [r,\theta_1,\theta_2]## and ##\vec{k}_3 = [\varrho,\xi_1,\xi_2]##
Thus, for a function ##\hat{f}\left( \big(\vec{k}_3\big)^2 \right)##, where in spherical coordinates ##\big(\vec{k}_3\big)^2 = \big( \varrho \big)^2##,

\begin{equation}

\begin{split}

\hat{f}\left( \big(\vec{k}_3\big)^2 \right) &= \hat{f}\left(\big( \varrho \big)^2 \right)

\\

&= \int_{0}^{\infty} e^{-2 \pi i \varrho r} f(r^2) dr

\end{split}

\end{equation}

such that ##\hat{f}\left( \big(\vec{k}_3\big)^2 \right)## is independent of ##\theta_1## and ##\theta_2##. Is that correct? Am I missing something?
 
Physics news on Phys.org
How are ##\theta_1## and ##\theta_2## defined?
 
##0 \leq \theta_1 \leq 1/2 ##, such that ## 0 \leq 2 \pi \theta_1 \leq \pi##
## 0 \leq \theta_2 \leq 1##, such that ## 0 \leq 2 \pi \theta_2 \leq 2 \pi##
 
I’m not sure I really understand, but in any case you definitely did your coordinate transformation wrong. Show us how you did it.
 
\begin{equation}
\begin{split}
x_1 &= r \sin{2 \pi \theta_1} \cos{2 \pi \theta_2}
\\
x_2 &= r \sin{2 \pi \theta_1} \sin{2 \pi \theta_2}
\\
x_3 &= r \cos{2 \pi \theta_1}
\end{split}
\end{equation}
where ##r \geq 0##, ##0 \leq \theta_1, \leq \frac{1}{2}## and ##0 \leq \theta_2 \leq 1##
 
Of course your first integral should be over physical space, not wave-vector space. That integral should include (using your notation I think) ##d\vec{x}_3## which has dimensions of volume. However, when you transformed the coordinates you somehow have ##dr d\theta_1 d\theta_2## which has dimensions of length. That should clue you in that it cannot possibly be correct. Have you transformed integrals from Cartesian to spherical coordinates before?
 
redtree said:
\begin{equation}
\begin{split}
x_1 &= r \sin{2 \pi \theta_1} \cos{2 \pi \theta_2}
\\
x_2 &= r \sin{2 \pi \theta_1} \sin{2 \pi \theta_2}
\\
x_3 &= r \cos{2 \pi \theta_1}
\end{split}
\end{equation}
where ##r \geq 0##, ##0 \leq \theta_1, \leq \frac{1}{2}## and ##0 \leq \theta_2 \leq 1##
Where is the mistake in the coordinate transformation?
 
These equations

redtree said:
\begin{equation}
\begin{split}
x_1 &= r \sin{2 \pi \theta_1} \cos{2 \pi \theta_2}
\\
x_2 &= r \sin{2 \pi \theta_1} \sin{2 \pi \theta_2}
\\
x_3 &= r \cos{2 \pi \theta_1}
\end{split}
\end{equation}
where ##r \geq 0##, ##0 \leq \theta_1, \leq \frac{1}{2}## and ##0 \leq \theta_2 \leq 1##
Are fine, but when you used them to change the variables of integration you did most of it wrong. For example ##d\vec{x}_3## should transform (if I did the math right) to ##4\pi^2 \, r^2 \, \sin(2\pi\theta_1) \, dr \, d\theta_1 \, d\theta_2##. Also
$$
\vec{k}_3\cdot \vec{x}_3 = k_1\, r\, \sin{2 \pi \theta_1} \cos{2 \pi \theta_2} + k_2\, r\, \sin{2 \pi \theta_1} \sin{2 \pi \theta_2} + k_3\, r\, \cos{2 \pi \theta_1}
$$

This is standard stuff for changing coordinates in multiple integrals, as learned in a standard calculus sequence. Have you learned multivariable calculus?

jason
 
  • Like
Likes   Reactions: redtree
jasonRF said:
These equationsAre fine, but when you used them to change the variables of integration you did most of it wrong. For example ##d\vec{x}_3## should transform (if I did the math right) to ##4\pi^2 \, r^2 \, \sin(2\pi\theta_1) \, dr \, d\theta_1 \, d\theta_2##. Also
$$
\vec{k}_3\cdot \vec{x}_3 = k_1\, r\, \sin{2 \pi \theta_1} \cos{2 \pi \theta_2} + k_2\, r\, \sin{2 \pi \theta_1} \sin{2 \pi \theta_2} + k_3\, r\, \cos{2 \pi \theta_1}
$$

This is standard stuff for changing coordinates in multiple integrals, as learned in a standard calculus sequence. Have you learned multivariable calculus?

jason
Got it. Thanks!
 
  • #10
such that,
\begin{equation}
\begin{split}
\hat{f}(\varrho,\xi_1,\xi_2) &= \int_{0}^{1} \int_{0}^{1/2} \int_{0}^{\infty} \text{Exp}\left[-2 \pi i \varrho r \big(\cos{2 \pi \theta_1 } \cos{2 \pi \xi_1 } + \cos{2 \pi (\theta_2 - \xi_2) } \sin{2 \pi \theta_1 } \sin{2 \pi \xi_1 }\big) \right]
\\
&4\pi^2 \, r^2 \, \sin(2\pi\theta_1) \, dr \, d\theta_1 \, d\theta_2
\end{split}
\end{equation}
 
  • #11
Does it remain true that if ##f\left( (\vec{x}_3)^2 \right) = r^2##, then ##f(\vec{x}_3) = f(r)##, where ##f(r) = \mathscr{F}^{-1}[\hat{f}(\varrho)]##?
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 12 ·
Replies
12
Views
4K