MHB Free Modules - Another issue regarding Bland Proposition 2.2.4

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Modules
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am trying to understand Section 2.2 on free modules and need help with the proof of Corollary 2.2.4 - that is some further help ... (for my first problem with the proof see my post "http://mathhelpboards.com/linear-abstract-algebra-14/free-modules-bland-corollary-2-2-4-issue-regarding-finite-generation-modules-13196.html" )Corollary 2.2.4 and its proof read as follows:View attachment 3538
View attachment 3539The last sentence in Bland's proof reads as follows:

" ... ... If $$ f \ : \ R^{ ( \Delta ) } \ \rightarrow \ F $$ is an isomorphism and $$f ( e_\alpha) = x_\alpha$$ then it follows that $$\{ x_\alpha \}_\Delta$$ is a basis for $$F$$. ... ... "Although the above statement seems plausible I am unable to frame a formal and rigorous proof of the statement ...

Can someone please show me exactly why $$ f \ : \ R^{ ( \Delta ) } \ \rightarrow \ F $$ is an isomorphism and $$f ( e_\alpha) = x_\alpha$$ implies that $$\{ x_\alpha \}_\Delta$$ is a basis for $$F$$?

Help will be appreciated ...

Peter
 
Physics news on Phys.org
Peter said:
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am trying to understand Section 2.2 on free modules and need help with the proof of Corollary 2.2.4 - that is some further help ... (for my first problem with the proof see my post "http://mathhelpboards.com/linear-abstract-algebra-14/free-modules-bland-corollary-2-2-4-issue-regarding-finite-generation-modules-13196.html" )Corollary 2.2.4 and its proof read as follows:View attachment 3538
View attachment 3539The last sentence in Bland's proof reads as follows:

" ... ... If $$ f \ : \ R^{ ( \Delta ) } \ \rightarrow \ F $$ is an isomorphism and $$f ( e_\alpha) = x_\alpha$$ then it follows that $$\{ x_\alpha \}_\Delta$$ is a basis for $$F$$. ... ... "Although the above statement seems plausible I am unable to frame a formal and rigorous proof of the statement ...

Can someone please show me exactly why $$ f \ : \ R^{ ( \Delta ) } \ \rightarrow \ F $$ is an isomorphism and $$f ( e_\alpha) = x_\alpha$$ implies that $$\{ x_\alpha \}_\Delta$$ is a basis for $$F$$?

Help will be appreciated ...

Peter
First we verify that $\{x_\alpha\}_{\Delta}$ generates $F$.
Let $m\in F$. Note that $f$ is surjective.
Therefore $f(r)=m$ for some $r\in R^{\delta}$.
Now $r=\sum_{\alpha\in \Delta} r_\alpha e_\alpha$ for some $r\alpha\in R$ (where almost all of $r_\alpha$'s are $0$).
Thus, $f(r)=\sum_{\alpha\in \Delta}r_\alpha f(e_\alpha)=\sum_{\alpha \in \Delta} r_\alpha x_\alpha$.

Thus $\{x_\alpha\}_{\alpha\in \Delta}$ generates $F$.

Now we need to verify that each element of $F$ can be expressed uniquely as an $R$-linear combination of $x_\alpha$'s.

Say $\sum_{\alpha\in \Delta} r_\alpha x_\alpha=0$.
Then $\sum_{\alpha\in \Delta}r_\alpha f(e_\alpha)=0$.
Therefore $f(\sum_{\alpha\in \Delta} r_\alpha e_\alpha) =0$.
Which gives $\sum_{\alpha\in \Delta} r_\alpha e_\alpha=0$.
This leads to $r_\alpha=0$ for all $\alpha\in \Delta$.

Hence we are done.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top