Frequency of Reflected light in special relativity

  • Thread starter Thread starter mancity
  • Start date Start date
  • Tags Tags
    Relativity
AI Thread Summary
The discussion centers on the application of the Doppler effect in special relativity, specifically regarding the frequency of reflected light in different frames of reference. There is confusion about why the Doppler effect is applied twice in frame K and whether the signs should be switched since the photon is moving away from the source. Clarification is provided that the correct frequency in frame K can be determined by analyzing the left- and right-going light pulses in the mirror frame. The conversation emphasizes the importance of understanding how frequencies transform between different inertial frames. Overall, the discussion seeks to resolve misunderstandings related to the Doppler effect in the context of special relativity.
mancity
Messages
26
Reaction score
2
Homework Statement
In a reference frame K a photon of frequency f falls normally on a mirror approaching it with relativistic velocity v. Find the momentum imparted to the mirror during the reflection of the photon (a) in the reference frame fixed to the mirror; (b) in the frame K.
Relevant Equations
f'/f = sqrt((1+(v/c))/(1-(v/c)))
In the. solution attached I'm not too sure why in frame K, we apply the doppler effect twice. Also, since the photon is moving away from the source, shouldn't the signs be switched? Thanks
Screenshot 2024-09-24 at 10.21.05 PM.png
 
Physics news on Phys.org
Your image is hard to read, but you seem to have the right answer in the mirror frame. So in that frame you have left- and right-going light of frequency ##f'##. What frequency will those pulses have in ##K##?
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top