1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Friction and Newton's second law

  1. May 19, 2012 #1
    1. The problem statement, all variables and given/known data
    It's attached.


    2. Relevant equations

    F = m*a
    F_f = -μ_k*F_N // [Force of friction] = μ_k*[Normal force]

    3. The attempt at a solution
    So, I think I managed to solve it -- at least, I got what the book got, but I don't understand part of what I did to get the answer.

    This is how I solved it and got the answer the book got:
    I drew a free-body diagram, and realized that F_n = 2Mg
    Which means F_f = -μ_k*2Mg, Block 2 is being pulled by an effective force to the right of Mg (Since -Mg + 2Mg = Mg).
    So the summation of all the forces in the x direction would be:

    ***: Mg + F_f = Mg - μ_k*2Mg = (5*M)a

    Plugging in for a and other known values and some algebra later, I get μ_k = 0.37

    And that's the answer the book gives.

    My question is why is it m = 5M in Newton's second law (the *** equation). When I first tried to solve it I used the mass of the 2nd block (m = 2M) and I thought that was correct.. apparently not.

    Please explain this to me. Thanks in advance!
     

    Attached Files:

  2. jcsd
  3. May 19, 2012 #2
    think of it in a linear manner (see attached file). You will probably understand it now.
     

    Attached Files:

  4. May 19, 2012 #3
    The equation relates the total force on the system of the three blocks to their acceleration. If you take m=2M that would be considering only the force on the block of mass 2M, and its force equation would be different(involving tensions in string, etc). The 5M is for the system of all the three blocks taken together.
     
  5. May 19, 2012 #4
    Thanks, that did help a lot. :)
     
  6. May 19, 2012 #5
    Normally i calculate for each mass.

    Check where the direction of acceleration
    1.(3M)-
    3Mg - F1=3Ma

    2 (2M)
    F1-F3-friction=2Ma

    3. (M)
    F3-Mg=Ma


    (1)+(2) +(3)

    3Mg-Mg-friction =6Ma
    net force=ma(Newton 2nd Law)
     
    Last edited: May 19, 2012
  7. May 19, 2012 #6
    lol, I was stuck on a problem involving tensions (I was using the total mass for m), and then I remember your saying something about that. Thanks! :)
     
  8. May 19, 2012 #7
    Basically when you judge it from the accelerating frame of reference then there will be a pseudo force acting on each of the spheres which amounts to 5Ma.

    From a non accelerating frame draw an FBD for each of the blocks seperately and then solve the equations simultaneously. You will get what you were missing earlier.
     
  9. May 19, 2012 #8
    I think your 3M is a mistake (it's 1M, 2M, 2M), but I understand what you're saying.

    Oh. So it always ends up as a linear system of equations with n equations n unknowns (where n is the # of bodies), so I can use matrices! The other unknowns in this case would be the two tensions, what you called F1 and F2.

    Thanks for helping me generalize the solution to the problem.
     
  10. May 19, 2012 #9
    I'm not sure what you mean by an "accelerating frame of reference." The frame of reference would be the table (which is stationary), no?

    I think by spheres you mean blocks, or perhaps that is some concept that I'm unfamiliar with..

    Oh.. In this situation I would use the latter approach, right? Since there is a non-accelerating (stationary in fact) frame of reference.

    You seem to imply that this problem has an accelerating frame of reference though, but maybe I'm misunderstanding you.
     
  11. May 20, 2012 #10
    Actually both the approaches are applicable and by accelerating FOR I mean the blocks itself ( sphere was a mistake).
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Friction and Newton's second law
Loading...