Friction causes a torque - then why do we sum it as a regular force?

AI Thread Summary
Friction generates torque, but torque is not a force and should not be included in a free body diagram (FBD) or summed with forces. Torque is balanced by other torques, not by forces like the normal force. When analyzing systems with both translational and rotational motion, forces are summed to find net force (Fnet=ma) while torques are summed to find net torque (τnet=Iα). It's important to recognize that the torque caused by forces depends on the chosen axis of rotation. Understanding the distinction between forces and torques is crucial in rigid body dynamics.
Differentiate it
Messages
63
Reaction score
2
Homework Statement
Friction causes a torque which is balanced out by the normal force. In most physics problems, we simply sum the applied force and friction, without considering anything about torque. I'm kind of new to Rigid Body Dynamics, so it'd be helpful if someone also explained how translational forces and torque are added in a system where there is both translational and rotational motion and/or sent links to some online resources. Thanks!
Relevant Equations
F=ma
Screenshot_20220829-112957.jpg
 
Physics news on Phys.org
Differentiate it said:
Homework Statement:: Friction causes a torque which is balanced out by the normal force. In most physics problems, we simply sum the applied force and friction, without considering anything about torque. I'm kind of new to Rigid Body Dynamics, so it'd be helpful if someone also explained how translational forces and torque are added in a system where there is both translational and rotational motion and/or sent links to some online resources. Thanks!
Relevant Equations:: F=ma

View attachment 313399
Torque is not a force so we do not include it on a FBD. We also don't sum it along with forces. (Check the units... the units for torque and force are different.)

I don't know what you mean by "Friction causes a torque which is balanced out by the normal force." A torque can only be balanced by another torque, not a force, and the torque due to the friction force is not canceled by the torque due to a normal force.

-Dan
 
  • Like
Likes Hall, Lnewqban and Differentiate it
topsquark said:
Torque is not a force so we do not include it on a FBD. We also don't sum it along with forces. (Check the units... the units for torque and force are different.)

I don't know what you mean by "Friction causes a torque which is balanced out by the normal force." A torque can only be balanced by another torque, not a force, and the torque due to the friction force is not canceled by the torque due to a normal force.

-Dan
Right right, I'm just stupid, no probs no probs i get it
 
Differentiate it said:
Friction causes a torque which is balanced out by the normal force.
The torque caused by a force is always in respect of some chosen axis. In the diagram, using an axis at ground level, F applies a torque, Ff doesn’t.
The exception is when you have a pair of equal and opposite forces along parallel lines of application. In that case the net torque is the same no matter what axis you choose.
What you can say is that if the system is static then the torque due to the F, Ff pair balances the torque due to the N, mg pair.
Differentiate it said:
how translational forces and torque are added in a system
You add the forces to write Fnet=ma, and add the torques to write τnet=Iα.
topsquark said:
Torque is not a force so we do not include it on a FBD.
It's quite standard to include torques in an FBD where appropriate. In some posed questions, applied torques are specified as such, rather than as pairs of equal and opposite forces.
 
Differentiate it said:
Right right, I'm just stupid, no probs no probs i get it
If you were stupid you wouldn't have asked us to help you clarify your question!

-Dan
 
  • Like
Likes gmax137, hmmm27, Lnewqban and 3 others
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top