Fully analytical solution for the "Leaky Integrate and Fire" Neuron model

Click For Summary
SUMMARY

The discussion centers on the challenge of developing a fully analytical solution for the leaky integrate and fire neuron model driven by arbitrary time-varying current. The equations presented include the dynamics of the neuron's voltage, specifically ##\dot{V} = -V + I(t)##, and the conditions for spiking. The participants explore potential solutions and suggest that while a passive equation solution exists, the complexity of incorporating spike dynamics complicates finding a general analytical solution. References to existing literature and methods such as Laplace Transforms are provided as potential avenues for further exploration.

PREREQUISITES
  • Understanding of leaky integrate and fire neuron models
  • Familiarity with differential equations and their solutions
  • Knowledge of Laplace Transforms and their application in solving ODEs
  • Basic concepts of neuronal dynamics and spiking behavior
NEXT STEPS
  • Research analytical solutions for leaky integrate and fire models with arbitrary input currents
  • Explore the application of Laplace Transforms to neuronal models
  • Study the relationship between voltage dynamics and spike timing in neural models
  • Investigate existing literature on the passive equation solutions for leaky integrate and fire neurons
USEFUL FOR

Neuroscientists, mathematicians, and researchers in computational neuroscience seeking to understand or model neuronal behavior, particularly those focused on the leaky integrate and fire neuron model.

madness
Messages
813
Reaction score
69
Does anyone know if it is possible to develop a fully analytical solution for a leaky integrate and fire neuron driven by arbitrary time-varying current? Here's what I have so far (setting as many possible constants to 0 and 1):

The equations:

## \dot{V} = - V + I(t) ## and if ##V(t) = 1## then ## \lim_{\epsilon\rightarrow 0} V(t + |\epsilon|) = 0 ##

Some further notation:

Let ##\{ t^{(1)}, t^{(2)}, ...\} = \{ t: V(t) = 1\} ##

My attempt at a solution:

We can solve when not spiking as ## V(t) = V(t_0) e^{-t} + \int_{t_0}^t e^{-t'} I(t-t') dt' ##.

So the solution in general for ##t^{(i-1)} < t < t^{(i)} ## is ## V(t) = \int_{t^{(i-1)}}^{t} e^{-t'} I(t-t') dt' ##.

We can also write the general equation as ## \dot{V} = - V + I(t) - \sum_i \delta(t-t^{(i)}) ##.

It looks almost possible to solve these equations for the spike times ##t^{(i)}## but I'm not sure whether it can be done. We can write ## 1 = \int_{t^{(i-1)}}^{t^{(i)}} e^{-t'} I(t-t') dt' ##, but I don't think spike times can be found from this analytically for arbitrary ##I(t)##. I guess what I'd really like is way to plug something for ##t^{(i)}## into the equation ## \dot{V} = - V + I(t) - \sum_i \delta(t-t^{(i)}) ## and make things a bit more explicit, even if it ends up being a self-consistent equation.
 
Last edited:
Biology news on Phys.org
Not my area at all...

This search on Google scholar gave me 5 "good" hits:
model for a leaky integrate and fire neuron driven by arbitrary time-varying current

Spikes are mentioned in two of them.
 
I haven't yet seen a fully analytical solution for abitrary input currents. I notice that we can write my equation as ##\dot{V} = -V -\delta(V-1) + I(t)##. It's an extremely compact equation when written this way, but can one write down the general solution?
 
madness said:
Does anyone know if it is possible to develop a fully analytical solution for a leaky integrate and fire neuron driven by arbitrary time-varying current?

This reference: Leaky integrate and fire model has solution for general ##I(t)##:

##
\displaystyle v(t)=v_r\exp\left(-\frac{t-t_0}{\tau_m}\right)+\frac{R}{\tau_m}\int_0^{t-t_0} \exp\left(-
\frac{s}{\tau_m}\right)I(t-s)ds
##
 
That's the solution to the the passive equation without spiking, i.e., ##\dot{V} = -V + I(t)##. The full equation is ##\dot{V} = -V + I(t) - \delta(V-1)## (for ##V_r = 0## and##\tau_m=1##, which I've assumed to make things simpler).
 
madness said:
That's the solution to the the passive equation without spiking, i.e., ##\dot{V} = -V + I(t)##. The full equation is ##\dot{V} = -V + I(t) - \delta(V-1)## (for ##V_r = 0## and##\tau_m=1##, which I've assumed to make things simpler).

Ok, then just a long-shot: The pendulum with a unit impulse ##y''+ay'+by=\delta(t-1)## is solved via Laplace Transforms. Perhaps you can tailor the method to your equation. Also, perhaps would be a good idea to move to differential equations sub-forum.
 
aheight said:
Ok, then just a long-shot: The pendulum with a unit impulse ##y''+ay'+by=\delta(t-1)## is solved via Laplace Transforms. Perhaps you can tailor the method to your equation. Also, perhaps would be a good idea to move to differential equations sub-forum.

Thanks. As far as I can see, the fact that the thing inside the delta function has to be determined through the dynamics is what makes this harder in my case. I think you might be right about moving to differential equations - it was only after I started the thread that I understood how compactly the model can be written as an ODE.
 
If you want the thread moved, please report it (bottom most faint characters in any post), and ask to move it. No problem. Or start completely new thread where it fits better.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
Replies
17
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
6K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K