Fundamental Theorem of Field extensions

Click For Summary
The discussion centers on the confusion regarding the Fundamental Theorem of Field Extensions, specifically how a field E, derived from a polynomial f(x) in F[x], contains a zero of f(x). It clarifies that while f(x) is an element of F[x], the zero of f(x) exists in the quotient field E = F[x]/<p(x)>, where p(x) is an irreducible factor of f(x). The key point is that there is an F-algebra homomorphism from F[x] to E that maps the variable X to an element c in E, ensuring that f(c) = 0. The discussion emphasizes the importance of understanding isomorphisms and how they allow for evaluating f on elements of E. Overall, the conversation aims to clarify the relationship between the polynomial, its roots, and the structure of the field extension.
Bipolarity
Messages
773
Reaction score
2
Suppose F is a field and that ## f(x) ## is a non-constant polynomial in ##F[x]##. Since ##F[x] ## is a unique factorization domain, ## f(x) ## has an irreducible factor, ## p(x) ##. Then the fundamental theorem of field theory says that the field ## E = F[x]/<p(x)> ## contains a zero of ## f(x) ##. I am confused by the last statement.

## f(x) ## is an element of ## F[x] ##, not ## E ##, so what does it mean to say that E contains a zero of ## f(x) ##? For an element ## \alpha ## to be a zero of ## f(x) ##, it must be the case that ## \alpha \in F ## and ## f(\alpha) = 0 ## where ## 0 ## is the identity of F.

I'm a bit confused here. Perhaps someone could lend me a hand? Thanks!

BiP
 
Physics news on Phys.org
Project f(x) into E.

Example: F is the real numbers, f(x) is $$X^2 + 1$$. f is irreducible and E = F[x]/<f(x)> is the field generated by the projections of 1 and x into E.

$$x^2 + 1 = 0 $$ in E so x is a zero of f(x) in E

More generally x is a zero of f(x) in F[x]/<f(x)>

If p(x) is an irreducible factor of f(x), then x is a zero of p(x) in E = F[x}/<p(x)> and thus is a zero of f(x) in E as well.
 
Last edited:
to say that a field E containing F, also contains a zero c of f, which lies in F[X], means there is an F algebra homomorphism from F[X]-->E, taking X to c, and f to zero. Since the homomorphism takes X to c, and is an F algebra homomorphism, it also takes f(X) to f(c), and this means f(c) = 0. In this case, the homomorphism takes X to its equivalence class mod p, and hence takes f(X) to its equivalence class mod p. Since the equivalence class of p is zero mod p, and p divides f, and the map is muliplicative, so also the equivalence class of f is zero mod p.

the whole confusion is the fact that isomorphisms are being used without mention. I.e. the zero of f is in E, so we want to first insert F into E, by replacing the isomorphic copy of F in E with F itself. Then we can view f as belonging to E[X], and can more intuitively evaluate f on an element of E. I.e. if c belongs to E, it is more obvious there is an evaluation map from E[X] to E taking X to c. I hopoe I got this right. This also confused me as a student, but van der Waerden made it very clear. also Lavinia is more succinct than I.
 
  • Like
Likes jim mcnamara
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 24 ·
Replies
24
Views
871
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K