1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: FWHM of radioactive sources confusion

  1. Mar 29, 2008 #1
    I am not sure if I should be using this board or the nuclear board but I chose this board because it is for class work. Anyways over the past few months I have been collecting data from radioactive sources (Th-230, Am-241, Po-210, Pu-238). Now I understand that the number of events divided by the live time will be proportional to the strength of the source. What I am not clear about is what the FWHM of the peaks means. My professor had me take note of them and it seemed like the smaller the FWHM the better of a source it was; but I don't know what the FWHM is really a measure of (in terms of the quality of the source). Going along with that, why would two different Th-230 sources have a different FWHM for their primary peak?

  2. jcsd
  3. Mar 29, 2008 #2
    The decay time of a source, as you have probably seen, is not exactly predictable; rather, it can happen at any time but tends to occur near a certain 'mean' time. In other words, just like a plinko game, there is a distribution of values which theoretically extends from t=0 (short decay time) to t-->infinity (long decay time). It looks sort of like a bell curve, and it is called either a Gaussian or Poisson distribution, depending on the number of events. Since these functions technically have infinite width, a convenient reference to use is the full-width-half-maximum or FWHM value. See http://www.physics.sfsu.edu/~bland/courses/490/labs/b2/b2.html [Broken] for details.

    If you look at your Gaussian on a plot of # of decays vs. decay time, you see there is a certain time where the number of decays peaks. This maximum is sometimes called the mean decay lifetime. The "distance" (in this case time) between the half-maximum values, which occur on either side of the peak, is the FWHM. The narrower the FWHM, the more likely a source will decay within a certain range of its mean value. See Wikipedia "FWHM" or the web page mentioned above for a decent picture of this.

    So sources that have narrow FWHMs have very predictable decay lifetimes, which can be useful. I believe one of the drawbacks of carbon-14 dating is that, the older the organic sample is, the wider the FWHM value is and therefore the harder it is to date with good statistical confidence.

    I don't know why two different Th-230 sources would have different FWHM values; this could either be normal statistical variance or it could have something to do with the purity or age of the sample. I would think that the older a sample is, the less predictably it will decay, since much of the sample has already decayed into something stable and you have just a few unstable nuclei left. However, I think the mean decay lifetime should be the same no matter what the age of the sample is. Was this the case?
    Last edited by a moderator: May 3, 2017
  4. Mar 29, 2008 #3


    User Avatar
    Staff Emeritus
    Science Advisor

    Are you counting gamma rays with a multi-channel analyzer?
  5. Mar 30, 2008 #4
    I'm sorry, I really should have specified that. I am using a multichannel analyzer, so the peaks I am getting the FWHM from are a small range of channels representing a small range of energies, and the total number of counts at each specific energy. Also for what its worth, to be able to compare the different elements, I divided each FWHM by the peak channel.
  6. Mar 30, 2008 #5
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook