Gauss' law in line integral, Q=##ϵ_0 ∮E.n dl=-ϵ_0 ∮∂ϕ/∂n dl##

AI Thread Summary
The discussion revolves around applying Gauss' law in a 2D context to calculate total charge on a conductor using line integrals of the electric field. The original poster seeks clarification on how to relate the line integral expression to charge calculation, particularly in the context of a 2D problem. They have computed the potential distribution using the finite element method and now aim to derive the total charge from the electric field. The conversation highlights the use of Green's Theorem to connect the divergence of the electric field to line integrals along the boundary. The poster proposes an equation for charge calculation, seeking validation on its correctness.
mdn
Messages
49
Reaction score
0
I know the Gauss law for surface integral to calculate total charge by integrating the normal components of electric field around whole surface . but in above expression charge is calculated using line integration of normal components of electric field along line. i don't understand this relation. any help please.
 
Engineering news on Phys.org
Is this a 2D problem? Because integrating over a closed curve (ie the "surface" of an area) is the 2D equivalent of integrating over the surface of a volume. By Green's Theorem, <br /> \begin{split}<br /> \int_{\Omega} \nabla \cdot \mathbf{E}\,dA &amp;= \oint_{\partial\Omega} (-E_y, E_x, 0)\cdot \mathbf{t}\,dl \\<br /> &amp;= \oint_{\partial \Omega} (\mathbf{k} \times \mathbf{E}) \cdot \mathbf{t}\,dl \\<br /> &amp;= \oint_{\partial \Omega} \mathbf{E} \cdot (\mathbf{t} \times \mathbf{k})\,dl \\<br /> &amp;= \oint_{\partial \Omega} \mathbf{E} \cdot \mathbf{n}\,dl<br /> \end{split} since \mathbf{k} = \mathbf{n} \times \mathbf{t} where \mathbf{t} is the unit tangent of the curve traversed anticlockwise and \mathbf{n} is the outward unit normal.
 
  • Like
Likes mdn and topsquark
pasmith said:
Is this a 2D problem? Because integrating over a closed curve (ie the "surface" of an area) is the 2D equivalent of integrating over the surface of a volume. By Green's Theorem, <br /> \begin{split}<br /> \int_{\Omega} \nabla \cdot \mathbf{E}\,dA &amp;= \oint_{\partial\Omega} (-E_y, E_x, 0)\cdot \mathbf{t}\,dl \\<br /> &amp;= \oint_{\partial \Omega} (\mathbf{k} \times \mathbf{E}) \cdot \mathbf{t}\,dl \\<br /> &amp;= \oint_{\partial \Omega} \mathbf{E} \cdot (\mathbf{t} \times \mathbf{k})\,dl \\<br /> &amp;= \oint_{\partial \Omega} \mathbf{E} \cdot \mathbf{n}\,dl<br /> \end{split} since \mathbf{k} = \mathbf{n} \times \mathbf{t} where \mathbf{t} is the unit tangent of the curve traversed anticlockwise and \mathbf{n} is the outward unit norm
yes, this is the 2D problem. i am trying to calculate the total charge on conductor, shown by bold lines in 2D
1664674830832.png

domain. i have calculated potential distribution at each point using Laplace equation in finite element method, now i want to calculate total charge Q on this conductor, from this charge i want to calculate the capacitance. i want to use gauss divergence theorem to calculate charge ##E\bar =-\nabla\phi##, where ##\phi =potential##. here is my real problem. how to calculate total charge on conductor in above case and which normal components of electric field (in terms of scalar potential ##\nabla\phi##) should i integrate to get total charge?

from my side i have written equation like this..
##Q=\oint (E. n) dl##
Q=##\nabla\phi .n##
=##\oint(\partial\phi/\partial x +\partial \phi/\partial y)## dl
=##\oint {\partial \phi/ \partial x} dl +\oint {\partial \phi/ \partial y} dl##
=##\oint {\partial \phi/ \partial x} dy +\oint {\partial \phi/ \partial y} dx##
is this correct?
 

Attachments

  • 1664674694036.png
    1664674694036.png
    15.3 KB · Views: 128
Last edited:
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Back
Top