Gauss' law in line integral, Q=##ϵ_0 ∮E.n dl=-ϵ_0 ∮∂ϕ/∂n dl##

AI Thread Summary
The discussion revolves around applying Gauss' law in a 2D context to calculate total charge on a conductor using line integrals of the electric field. The original poster seeks clarification on how to relate the line integral expression to charge calculation, particularly in the context of a 2D problem. They have computed the potential distribution using the finite element method and now aim to derive the total charge from the electric field. The conversation highlights the use of Green's Theorem to connect the divergence of the electric field to line integrals along the boundary. The poster proposes an equation for charge calculation, seeking validation on its correctness.
mdn
Messages
49
Reaction score
0
I know the Gauss law for surface integral to calculate total charge by integrating the normal components of electric field around whole surface . but in above expression charge is calculated using line integration of normal components of electric field along line. i don't understand this relation. any help please.
 
Engineering news on Phys.org
Is this a 2D problem? Because integrating over a closed curve (ie the "surface" of an area) is the 2D equivalent of integrating over the surface of a volume. By Green's Theorem, <br /> \begin{split}<br /> \int_{\Omega} \nabla \cdot \mathbf{E}\,dA &amp;= \oint_{\partial\Omega} (-E_y, E_x, 0)\cdot \mathbf{t}\,dl \\<br /> &amp;= \oint_{\partial \Omega} (\mathbf{k} \times \mathbf{E}) \cdot \mathbf{t}\,dl \\<br /> &amp;= \oint_{\partial \Omega} \mathbf{E} \cdot (\mathbf{t} \times \mathbf{k})\,dl \\<br /> &amp;= \oint_{\partial \Omega} \mathbf{E} \cdot \mathbf{n}\,dl<br /> \end{split} since \mathbf{k} = \mathbf{n} \times \mathbf{t} where \mathbf{t} is the unit tangent of the curve traversed anticlockwise and \mathbf{n} is the outward unit normal.
 
  • Like
Likes mdn and topsquark
pasmith said:
Is this a 2D problem? Because integrating over a closed curve (ie the "surface" of an area) is the 2D equivalent of integrating over the surface of a volume. By Green's Theorem, <br /> \begin{split}<br /> \int_{\Omega} \nabla \cdot \mathbf{E}\,dA &amp;= \oint_{\partial\Omega} (-E_y, E_x, 0)\cdot \mathbf{t}\,dl \\<br /> &amp;= \oint_{\partial \Omega} (\mathbf{k} \times \mathbf{E}) \cdot \mathbf{t}\,dl \\<br /> &amp;= \oint_{\partial \Omega} \mathbf{E} \cdot (\mathbf{t} \times \mathbf{k})\,dl \\<br /> &amp;= \oint_{\partial \Omega} \mathbf{E} \cdot \mathbf{n}\,dl<br /> \end{split} since \mathbf{k} = \mathbf{n} \times \mathbf{t} where \mathbf{t} is the unit tangent of the curve traversed anticlockwise and \mathbf{n} is the outward unit norm
yes, this is the 2D problem. i am trying to calculate the total charge on conductor, shown by bold lines in 2D
1664674830832.png

domain. i have calculated potential distribution at each point using Laplace equation in finite element method, now i want to calculate total charge Q on this conductor, from this charge i want to calculate the capacitance. i want to use gauss divergence theorem to calculate charge ##E\bar =-\nabla\phi##, where ##\phi =potential##. here is my real problem. how to calculate total charge on conductor in above case and which normal components of electric field (in terms of scalar potential ##\nabla\phi##) should i integrate to get total charge?

from my side i have written equation like this..
##Q=\oint (E. n) dl##
Q=##\nabla\phi .n##
=##\oint(\partial\phi/\partial x +\partial \phi/\partial y)## dl
=##\oint {\partial \phi/ \partial x} dl +\oint {\partial \phi/ \partial y} dl##
=##\oint {\partial \phi/ \partial x} dy +\oint {\partial \phi/ \partial y} dx##
is this correct?
 

Attachments

  • 1664674694036.png
    1664674694036.png
    15.3 KB · Views: 127
Last edited:
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...

Similar threads

Back
Top