(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

A charge of uniform linear density 2.80 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 5.20 cm, outer radius = 10.8 cm). The net charge on the shell is zero. (a) What is the magnitude (in N/C) of the electric field at distance r = 16.0 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell?

2. Relevant equations

E= lambda / (2pi epsilon r) I think....that's all

3. The attempt at a solution

I have the solution for part a) which I used the above formula to determine as 3.15e2 N/C. However, for parts b) and c), I am unsure as to whether I am to use that same formula, or if I'm supposed to use integral E*dA*cos(theta), and if so, would the value I determined from the first part be the E for the second formula? thanks! (I'm actually kinda lost on how to start the b & c parts....)

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Gauss' Law using linear charge density

**Physics Forums | Science Articles, Homework Help, Discussion**