- 24,488
- 15,057
It's indeed a mathematical fact that the exponential-decay law is an approximation. It is derived from 1st-order perturbation theory, neglecting the reaction between the decay products and leads to Breit-Wigner distributions for the transition amplitudes in energy-representation, which means to the exponential decay law in the time domain. It's precisely this neglect of the reaction between the decay products that leads to the exponential decay law, i.e., it neglects the possibility to go back to the original state after decay. This is a good approximation in many cases, but, e.g., not for cases, where the decay is "close to threshold", as demonstrated in the papers cited above. I think the Nature article nicely summarizes this state of affairs.