WernerQH
- 564
- 405
You are oversimplifying. You need more than two coefficients to describe the situation using the Schrödinger equation. In the description of the decay you need to include also the decay products (typically an escaping electron and anti-neutrino). Whether or not a Geiger counter is present, in the derivation of Fermi's Golden Rule we take the squared modulus of the coefficients of the final states (Born rule) and add them up. This would lead to a decay probability increasing with time like ## t^2 ##, were it not for the density of final states. As time progresses, the contributing final states decrease, their distribution in energy becoming ever sharper (the width decreasing proportional to ## t^{-1} ##). In this way we arrive at a constant decay rate. And for all we know, radioactive decay happens even without Geiger counters present.jeeves said:Suppose we have a Schrodinger's cat setup in a transparent box. I use ##A(t)## as the coefficient of the "undecayed" atom state, and ##B(t)## as the coefficient of the "decayed" atom state.
What really happens, is that a radioactive nucleus just sits there for a long time, and suddenly decays. A slowly (over the course of minutes, days, or years) evolving wave function exists only in the minds of theoreticians. You should not think that your two coefficients ## A(t), B(t) ## have some direct physical meaning.