Undergrad General form of symmetric 3x3 matrix with only 2 eigenvalues

Click For Summary
SUMMARY

The general form of a symmetric 3x3 matrix with only two distinct eigenvalues, represented as ##\textbf{A}##, can be constructed using four parameters: the eigenvalues ##a, b## and the angles ##\theta, \phi## that define the direction of the eigenvector associated with ##a##. The matrix can be expressed as ##\textbf{A} = \textbf{R}^T \textbf{D} \textbf{R}##, where ##\textbf{D} = \text{diag}(a, b, b)## and ##\textbf{R}## is a rotation matrix. For efficient least-squares fitting to measured data, it is more effective to vary six parameters of a general symmetric matrix ##\textbf{S}##, defined as ##\begin{pmatrix}s_1&s_2&s_3\\s_2&s_4&s_5\\s_3&s_5&s_6\end{pmatrix}##, rather than the four parameters associated with the eigenvalues and angles. The discussion concludes with derived relationships for expressing parameters ##s_1## and ##s_4## in terms of ##s_2, s_3, s_5, s_6##.

PREREQUISITES
  • Understanding of symmetric matrices and their properties
  • Familiarity with eigenvalues and eigenvectors
  • Knowledge of rotation matrices and their application in linear algebra
  • Basic principles of least-squares fitting in data analysis
NEXT STEPS
  • Explore the derivation of eigenvalues for symmetric matrices
  • Learn about rotation matrices and their role in transforming matrices
  • Research least-squares fitting techniques in the context of matrix parameterization
  • Investigate alternative parametrizations for symmetric matrices with specific eigenvalue structures
USEFUL FOR

Mathematicians, physicists, data scientists, and engineers involved in matrix analysis, eigenvalue problems, and optimization techniques in data fitting.

odietrich
Messages
8
Reaction score
2
I'm looking for the general form of a symmetric 3×3 matrix (or tensor) ##\textbf{A}## with only two different eigenvalues, i.e. of a matrix with the diagonalized form ##\textbf{D}=\begin{pmatrix}a& 0 & 0\\0 & b & 0\\0 & 0 & b\end{pmatrix} = \text{diag}(a,b,b)##.

In general, such a matrix can be described by 4 parameters, e.g. the two eigenvalues ##a,b## and the direction of the eigenvector of ##a## defined by the angles ##\theta,\phi## (in spherical coordinates). The other eigenvectors are in the plane perpendicular to this direction (with arbitrary in-plane orientation).

With these four parameters, ##(a,b,\theta,\phi)##, I can construct arbitrary matrices with the eigenvalues ##(a,b,b)## by multiplying ##\textbf{D}## with an appropriate rotation matrix ##\textbf{R}## (consisting basically of the eigenvectors): ##\textbf{A} = \textbf{R}^T \textbf{D} \textbf{R}##.

Is there any other (well-known?) form or parametrization (with 4 independent parameters) of such matrices ##\textbf{A}##? Ideally, a parametrization without (spherical) angles, but closely related to the actual matrix entries in ##\textbf{A}##?

The background of this question is that I want to find such a matrix ##\textbf{A}## by least-squares fitting to measured data that depend on ##\textbf{A}##, and up to now it seems more efficient to vary 6 independent parameters ##(s_1,\ldots,s_6)## defining a general symmetric matrix ##\textbf{S}=\begin{pmatrix}s_1&s_2&s_3\\s_2&s_4&s_5\\s_3&s_5&s_6\end{pmatrix}## than to vary e.g. the 4 parameters ##(a,b,\theta,\phi)## from above. (More efficient means that the fit converges faster - in spite of having more degrees of freedom - and typically does not run into wrong local minima which sometimes happens depending on the initial values of the angles ##\theta,\phi##.) It might help if I could express 2 of the 6 parameters ##(s_1,\ldots,s_6)## by the other 4 parameters and use these remaining 4 parameters for fitting, so I could perhaps rephrase my question: Are there two "simple" dependencies ##s_1=s_1(s_3,s_4,s_5,s_6)## and ##s_2=s_2(s_3,s_4,s_5,s_6)## (with ##s_1,\ldots,s_6## as in the form of the general symmetric matrix given above) to describe the matrix ##\textbf{A}##?

(If this is a known problem, I'd be also grateful for pointing me to any textbooks or articles dealing with it - I wasn't able to find any.)
 
Last edited:
Physics news on Phys.org
You might want to rewrite your entire matrix as
$$
D = b I + (a-b) \begin{pmatrix}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
$$
You can then use ##b## and the components of a single column vector as the parameter space. You will also have to separately treat the case of ##a-b## being negative, which can also be done with the same type of parametrisation.
 
  • Like
Likes odietrich
Thanks for your suggestion! I think that the resulting parameters are very similar to another set of 4 numbers (that I had considered before, but didn't mention in my question above): the eigenvector of ##a## multiplied by ##a## and the eigenvalue ##b##?
I tried least-squares fitting with these (latter) parameters as well, but this didn't work better than using ##(a,b,\theta,\phi)##. Somehow, fitting based on the (first) eigenvector (either in the form ##(\theta,\phi)## or in the form of a scaled 3-component eigenvector) is considerably worse than fitting with the (non-diagonalized) symmetric matrix ##\mathbf{S}## from above.
 
Considering Orodruin's suggestion in more detail, I found that I can write the symmetric matrix ##\textbf{S}=\begin{pmatrix}s_1&s_2&s_3\\s_2&s_4&s_5\\s_3&s_5&s_6\end{pmatrix}## as ##v\textbf{1} + (u-v) (\textbf{v}_1\otimes\textbf{v}_1) = v\textbf{1} + (u-v) \begin{pmatrix}rr&rs&rt\\rs&ss&st\\rt&st&tt\end{pmatrix}## where the (first) eigenvector be ##\textbf{v}_1=(r,s,t)^T## with ##r^2+s^2+t^2=1##, so:
$$\textbf{S} = v\textbf{1} + (u-v) \begin{pmatrix}r^2&rs&r\sqrt{1-r^2-s^2}\\rs&s^2&s\sqrt{1-r^2-s^2}\\r\sqrt{1-r^2-s^2}&s\sqrt{1-r^2-s^2}&1-r^2-s^2\end{pmatrix}$$
or (all together):
$$\begin{pmatrix}s_1&s_2&s_3\\s_2&s_4&s_5\\s_3&s_5&s_6\end{pmatrix}
= \begin{pmatrix}
v+(u-v)r^2 & (u-v)rs & (u-v)r\sqrt{1-r^2-s^2}\\
(u-v)rs & v+(u-v)s^2 & (u-v)s\sqrt{1-r^2-s^2}\\
(u-v)r\sqrt{1-r^2-s^2} & (u-v)s\sqrt{1-r^2-s^2} & v+(u-v)(1-r^2-s^2)\end{pmatrix}.$$
Thus, I have expressed the symmetric matrix ##\textbf{S}## by a matrix parametrized by ##(u,v,r,s)##.
Now, I would like to (partially) invert this and find some dependencies between the six parameters ##(s_1, \ldots, s_6)## based on this result. In theory, it must be possible to express e.g. ##s_3## and ##s_5## by the other matrix entries ##s_1, s_2, s_4, s_6##. I wonder if these dependencies can be found be staring long enough at these two matrices ...

UPDATE (just to clarify): The last paragraph basically means that I would like to express e.g. ##s_3=(u-v)r\sqrt{1-r^2-s^2}## by an appropriate combination of the terms ##s_1, s_2, s_4, s_6##, i.e. by combining ##v+(u-v)r^2##, ##(u-v)rs##, ...
 
Last edited:
Here's a solution (took some staring:smile:):
$$s_1 = s_6 + s_3 (\frac{s_2}{s_5} - \frac{s_5}{s_2})$$
and
$$s_4 = s_6 + s_5 (\frac{s_2}{s_3} - \frac{s_3}{s_2}).$$
With this solution, I can express ##s_1## and ##s_4## by the matrix entries ##s_2, s_3, s_5##, and ##s_6##.
So, if the symmetric matrix ##\textbf{S}## has only two different eigenvalues ##(a,b,b)## and, thus, can be constructed as ##\textbf{S}=\textbf{R}^T \textrm{diag}(a,b,b)\textbf{R}##, then the elements of ##\textbf{S}## (indexed as defined in posting #1) satisfy the two given equations (of course, the off-diagonal elements of ##\textbf{S}## should not be zero ...)
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
8
Views
24K
Replies
4
Views
9K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K