General motion in a straight line.

Click For Summary

Discussion Overview

The discussion revolves around the analysis of motion in a straight line, specifically focusing on the calculation of distance and displacement using a velocity function. Participants explore methods to determine whether a bird returns to its starting point, A, based on integration of the velocity function over a given time interval.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant calculates the distance using a time of 4.25 seconds and arrives at a distance of -3.23×10^-3, adding 5.78m to argue that the bird returns to A.
  • Another participant presents an integral of the velocity function, asserting that the areas above and below the x-axis in a velocity vs. time graph indicate a return to the starting point, A, since their sum is zero.
  • Several participants provide the same integral and calculations, confirming the time T as approximately 4.25 seconds and discussing the implications of the shaded areas in the graph.
  • A participant inquires about the method used to derive the cubic equation and the calculation involving the square root of 1105.
  • Another participant explains their process of integrating the velocity function, setting it to zero, and solving the resulting cubic equation, detailing the steps taken to find the roots.

Areas of Agreement / Disagreement

There is no clear consensus on the correctness of the methods used or the interpretations of the results. Multiple approaches and calculations are presented, and participants express uncertainty regarding the derivation of certain values.

Contextual Notes

Some participants reference specific calculations and methods without fully clarifying assumptions or the implications of their results. The discussion includes unresolved mathematical steps and varying interpretations of the graphical representation of motion.

Shah 72
MHB
Messages
274
Reaction score
0
20210609_222002.jpg

In q(c) I calculated the distance using t= 4.25 S . I get S=-3.23×10^-3
I added 5.78m to this which is the distance between A and B, I get 5.78m. Is this the correct method to prove that the bird returns to A. Pls help
 
Mathematics news on Phys.org
$\displaystyle \dfrac{1}{12}\int_0^T 3t^3-16t^2-10t+60 \, dt = 0$

$T = \dfrac{\sqrt{1105}+5}{9} \approx 4.25$

in the attached graph of velocity vs time ...

shaded area above the x-axis = displacement from A to B

shaded area below the x-axis = displacement from B to A

the two shaded areas sum to zero, indicating a return to the starting point, A

zero_Disp.png
 
skeeter said:
$\displaystyle \dfrac{1}{12}\int_0^T 3t^3-16t^2-10t+60 \, dt = 0$

$T = \dfrac{\sqrt{1105}+5}{9} \approx 4.25$

in the attached graph of velocity vs time ...

shaded area above the x-axis = displacement from A to B

shaded area below the x-axis = displacement from B to A

the two shaded areas sum to zero, indicating a return to the starting point, A

https://www.physicsforums.com/attachments/11188
Thanks so much!
 
skeeter said:
$\displaystyle \dfrac{1}{12}\int_0^T 3t^3-16t^2-10t+60 \, dt = 0$

$T = \dfrac{\sqrt{1105}+5}{9} \approx 4.25$

in the attached graph of velocity vs time ...

shaded area above the x-axis = displacement from A to B

shaded area below the x-axis = displacement from B to A

the two shaded areas sum to zero, indicating a return to the starting point, A

https://www.physicsforums.com/attachments/11188
Can I pls ask you
skeeter said:
$\displaystyle \dfrac{1}{12}\int_0^T 3t^3-16t^2-10t+60 \, dt = 0$

$T = \dfrac{\sqrt{1105}+5}{9} \approx 4.25$

in the attached graph of velocity vs time ...

shaded area above the x-axis = displacement from A to B

shaded area below the x-axis = displacement from B to A

the two shaded areas sum to zero, indicating a return to the starting point, A

https://www.physicsforums.com/attachments/11188
Can you pls tell me how did you calculate that? Did you solve the cubic equation? I don't understand how you got the equation sq root (1105).
 
I integrated the velocity function and evaluated it from 0 to T and set the result equal to zero.

$\dfrac{T}{12}\left(\dfrac{3T^3}{4} - \dfrac{16T^2}{3} - 5T+ 60\right) = 0$

ignored the T/12 factor & multiplied the terms inside the parentheses by 12 to clear the fractions …

$9T^3 - 64T^2 -60T+720 = 0$

I graphed the cubic on my calculator and found T = 6 was a zero, then used synthetic division to find the quadratic factor …

$(T-6)(9T^2-10T-120) = 0$

$T = \dfrac{10 \pm \sqrt{4420}}{18}$

discarding the negative value for T …

$T = \dfrac{10+2\sqrt{1105}}{18} = \dfrac{5+\sqrt{1105}}{9}$
 
skeeter said:
I integrated the velocity function and evaluated it from 0 to T and set the result equal to zero.

$\dfrac{T}{12}\left(\dfrac{3T^3}{4} - \dfrac{16T^2}{3} - 5T+ 60\right) = 0$

ignored the T/12 factor & multiplied the terms inside the parentheses by 12 to clear the fractions …

$9T^3 - 64T^2 -60T+720 = 0$

I graphed the cubic on my calculator and found T = 6 was a zero, then used synthetic division to find the quadratic factor …

$(T-6)(9T^2-10T-120) = 0$

$T = \dfrac{10 \pm \sqrt{4420}}{18}$

discarding the negative value for T …

$T = \dfrac{10+2\sqrt{1105}}{18} = \dfrac{5+\sqrt{1105}}{9}$
Thank you so much!
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
850
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 20 ·
Replies
20
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K