MHB General motion in a straight line.

AI Thread Summary
The discussion revolves around calculating the motion of a bird returning to point A after traveling to point B. The user determined the time T as approximately 4.25 seconds using the integral of a velocity function, which resulted in a zero net displacement. The graph of velocity versus time shows that the areas above and below the x-axis cancel each other out, confirming the return to the starting point. The method involved solving a cubic equation derived from the integrated velocity function. Overall, the calculations and graphical analysis support the conclusion that the bird returns to point A.
Shah 72
MHB
Messages
274
Reaction score
0
20210609_222002.jpg

In q(c) I calculated the distance using t= 4.25 S . I get S=-3.23×10^-3
I added 5.78m to this which is the distance between A and B, I get 5.78m. Is this the correct method to prove that the bird returns to A. Pls help
 
Mathematics news on Phys.org
$\displaystyle \dfrac{1}{12}\int_0^T 3t^3-16t^2-10t+60 \, dt = 0$

$T = \dfrac{\sqrt{1105}+5}{9} \approx 4.25$

in the attached graph of velocity vs time ...

shaded area above the x-axis = displacement from A to B

shaded area below the x-axis = displacement from B to A

the two shaded areas sum to zero, indicating a return to the starting point, A

zero_Disp.png
 
skeeter said:
$\displaystyle \dfrac{1}{12}\int_0^T 3t^3-16t^2-10t+60 \, dt = 0$

$T = \dfrac{\sqrt{1105}+5}{9} \approx 4.25$

in the attached graph of velocity vs time ...

shaded area above the x-axis = displacement from A to B

shaded area below the x-axis = displacement from B to A

the two shaded areas sum to zero, indicating a return to the starting point, A

https://www.physicsforums.com/attachments/11188
Thanks so much!
 
skeeter said:
$\displaystyle \dfrac{1}{12}\int_0^T 3t^3-16t^2-10t+60 \, dt = 0$

$T = \dfrac{\sqrt{1105}+5}{9} \approx 4.25$

in the attached graph of velocity vs time ...

shaded area above the x-axis = displacement from A to B

shaded area below the x-axis = displacement from B to A

the two shaded areas sum to zero, indicating a return to the starting point, A

https://www.physicsforums.com/attachments/11188
Can I pls ask you
skeeter said:
$\displaystyle \dfrac{1}{12}\int_0^T 3t^3-16t^2-10t+60 \, dt = 0$

$T = \dfrac{\sqrt{1105}+5}{9} \approx 4.25$

in the attached graph of velocity vs time ...

shaded area above the x-axis = displacement from A to B

shaded area below the x-axis = displacement from B to A

the two shaded areas sum to zero, indicating a return to the starting point, A

https://www.physicsforums.com/attachments/11188
Can you pls tell me how did you calculate that? Did you solve the cubic equation? I don't understand how you got the equation sq root (1105).
 
I integrated the velocity function and evaluated it from 0 to T and set the result equal to zero.

$\dfrac{T}{12}\left(\dfrac{3T^3}{4} - \dfrac{16T^2}{3} - 5T+ 60\right) = 0$

ignored the T/12 factor & multiplied the terms inside the parentheses by 12 to clear the fractions …

$9T^3 - 64T^2 -60T+720 = 0$

I graphed the cubic on my calculator and found T = 6 was a zero, then used synthetic division to find the quadratic factor …

$(T-6)(9T^2-10T-120) = 0$

$T = \dfrac{10 \pm \sqrt{4420}}{18}$

discarding the negative value for T …

$T = \dfrac{10+2\sqrt{1105}}{18} = \dfrac{5+\sqrt{1105}}{9}$
 
skeeter said:
I integrated the velocity function and evaluated it from 0 to T and set the result equal to zero.

$\dfrac{T}{12}\left(\dfrac{3T^3}{4} - \dfrac{16T^2}{3} - 5T+ 60\right) = 0$

ignored the T/12 factor & multiplied the terms inside the parentheses by 12 to clear the fractions …

$9T^3 - 64T^2 -60T+720 = 0$

I graphed the cubic on my calculator and found T = 6 was a zero, then used synthetic division to find the quadratic factor …

$(T-6)(9T^2-10T-120) = 0$

$T = \dfrac{10 \pm \sqrt{4420}}{18}$

discarding the negative value for T …

$T = \dfrac{10+2\sqrt{1105}}{18} = \dfrac{5+\sqrt{1105}}{9}$
Thank you so much!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
4
Views
2K
Replies
2
Views
1K
Replies
6
Views
1K
Replies
4
Views
752
Replies
2
Views
967
Replies
20
Views
1K
Replies
7
Views
897
Replies
4
Views
967
Replies
4
Views
1K
Back
Top