General motion in a straight line.

Click For Summary
SUMMARY

The discussion centers on calculating the return distance of a bird from point A to point B using the integral of a velocity function. The integral $\displaystyle \dfrac{1}{12}\int_0^T 3t^3-16t^2-10t+60 \, dt = 0$ was evaluated to find the time T, approximately 4.25 seconds, indicating that the bird returns to point A. The area under the velocity vs. time graph, with positive and negative displacements, confirms that the total displacement sums to zero, validating the return to the starting point.

PREREQUISITES
  • Understanding of integral calculus, specifically definite integrals.
  • Familiarity with cubic equations and synthetic division techniques.
  • Knowledge of velocity vs. time graphs and their interpretation.
  • Ability to perform algebraic manipulations involving square roots and polynomial equations.
NEXT STEPS
  • Study the properties of definite integrals and their applications in physics.
  • Learn about synthetic division and how to solve cubic equations effectively.
  • Explore the relationship between displacement and area under the curve in velocity vs. time graphs.
  • Investigate advanced calculus topics, such as the Fundamental Theorem of Calculus.
USEFUL FOR

Students and educators in physics and mathematics, particularly those focusing on kinematics and calculus applications in motion analysis.

Shah 72
MHB
Messages
274
Reaction score
0
20210609_222002.jpg

In q(c) I calculated the distance using t= 4.25 S . I get S=-3.23×10^-3
I added 5.78m to this which is the distance between A and B, I get 5.78m. Is this the correct method to prove that the bird returns to A. Pls help
 
Mathematics news on Phys.org
$\displaystyle \dfrac{1}{12}\int_0^T 3t^3-16t^2-10t+60 \, dt = 0$

$T = \dfrac{\sqrt{1105}+5}{9} \approx 4.25$

in the attached graph of velocity vs time ...

shaded area above the x-axis = displacement from A to B

shaded area below the x-axis = displacement from B to A

the two shaded areas sum to zero, indicating a return to the starting point, A

zero_Disp.png
 
skeeter said:
$\displaystyle \dfrac{1}{12}\int_0^T 3t^3-16t^2-10t+60 \, dt = 0$

$T = \dfrac{\sqrt{1105}+5}{9} \approx 4.25$

in the attached graph of velocity vs time ...

shaded area above the x-axis = displacement from A to B

shaded area below the x-axis = displacement from B to A

the two shaded areas sum to zero, indicating a return to the starting point, A

https://www.physicsforums.com/attachments/11188
Thanks so much!
 
skeeter said:
$\displaystyle \dfrac{1}{12}\int_0^T 3t^3-16t^2-10t+60 \, dt = 0$

$T = \dfrac{\sqrt{1105}+5}{9} \approx 4.25$

in the attached graph of velocity vs time ...

shaded area above the x-axis = displacement from A to B

shaded area below the x-axis = displacement from B to A

the two shaded areas sum to zero, indicating a return to the starting point, A

https://www.physicsforums.com/attachments/11188
Can I pls ask you
skeeter said:
$\displaystyle \dfrac{1}{12}\int_0^T 3t^3-16t^2-10t+60 \, dt = 0$

$T = \dfrac{\sqrt{1105}+5}{9} \approx 4.25$

in the attached graph of velocity vs time ...

shaded area above the x-axis = displacement from A to B

shaded area below the x-axis = displacement from B to A

the two shaded areas sum to zero, indicating a return to the starting point, A

https://www.physicsforums.com/attachments/11188
Can you pls tell me how did you calculate that? Did you solve the cubic equation? I don't understand how you got the equation sq root (1105).
 
I integrated the velocity function and evaluated it from 0 to T and set the result equal to zero.

$\dfrac{T}{12}\left(\dfrac{3T^3}{4} - \dfrac{16T^2}{3} - 5T+ 60\right) = 0$

ignored the T/12 factor & multiplied the terms inside the parentheses by 12 to clear the fractions …

$9T^3 - 64T^2 -60T+720 = 0$

I graphed the cubic on my calculator and found T = 6 was a zero, then used synthetic division to find the quadratic factor …

$(T-6)(9T^2-10T-120) = 0$

$T = \dfrac{10 \pm \sqrt{4420}}{18}$

discarding the negative value for T …

$T = \dfrac{10+2\sqrt{1105}}{18} = \dfrac{5+\sqrt{1105}}{9}$
 
skeeter said:
I integrated the velocity function and evaluated it from 0 to T and set the result equal to zero.

$\dfrac{T}{12}\left(\dfrac{3T^3}{4} - \dfrac{16T^2}{3} - 5T+ 60\right) = 0$

ignored the T/12 factor & multiplied the terms inside the parentheses by 12 to clear the fractions …

$9T^3 - 64T^2 -60T+720 = 0$

I graphed the cubic on my calculator and found T = 6 was a zero, then used synthetic division to find the quadratic factor …

$(T-6)(9T^2-10T-120) = 0$

$T = \dfrac{10 \pm \sqrt{4420}}{18}$

discarding the negative value for T …

$T = \dfrac{10+2\sqrt{1105}}{18} = \dfrac{5+\sqrt{1105}}{9}$
Thank you so much!
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
833
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 20 ·
Replies
20
Views
1K
  • · Replies 7 ·
Replies
7
Views
986
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K