I General solution of heat equation?

lriuui0x0
Messages
101
Reaction score
25
We know

$$
K(x,t) = \frac{1}{\sqrt{4\pi t}}\exp(-\frac{x^2}{4t})
$$

is a solution to the heat equation:

$$
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}
$$

I would like to ask how to prove:

$$
u(x,t) = \int_{-\infty}^{\infty} K(x-y,t)f(y)dy
$$

is also the solution to the equation, and also:

$$
\lim_{t\to 0^+} u(x,t) = f(x)
$$
 
Physics news on Phys.org
The first part is a lot easier than you might think, you just use the fact that K satisfies the heat equation, that is that $$\frac{\partial K}{\partial t}=\frac{\partial^2K}{\partial x^2}$$ and you go ahead to prove that ##u(x,t)## as it is defined also satisfies the heat equation by working on both sides of the heat equation for this specific ##u##.
All you use is that in the expression for## u##, because we integrate with respect to## y ##which is independent variable with respect to ##x ##and## t##, the partial derivative with respect to t (or x) passes under the integral sign, that is for example $$\frac{\partial u}{\partial t}=\frac{\partial \int_{-\infty}^{\infty}K(x-y,t)f(y)dy}{\partial t}=\int_{-\infty}^{\infty}\frac{\partial K(x-y,t)}{\partial t} f(y) dy$$ and similar for the first and second partial derivative with respect to x.
 
the downstairs limit of the integral must be zero. Actually the whole question is contained in textbooks in PDE
 
Thanks! I found some reference on this. Basically the integral is a solution follows from the limiting case of linear combination of ##K(x-y,t)##, and the limit follows from the limit of Gaussian function is delta function.
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
867