Consider Minkowski spacetime with signature (-+++) and coordinates (ct,x,y,z) with respect to the standard orthogonal basis. I'm looking for the smallest set of matrices that can generate any Lorentz transformation with respect to this basis. I came up with 8 matrices (see below). Am I missing something?(adsbygoogle = window.adsbygoogle || []).push({});

Three boosts (in x, y and z direction)

[tex]

\text{Boost}_{x}(\tilde{\alpha})=\left[\begin{matrix}

\cosh\tilde{\alpha}&\sinh\tilde{\alpha}&0&0\\

\sinh\tilde{\alpha}&\cosh\tilde{\alpha}&0&0\\

0&0&1&0\\

0&0&0&1

\end{matrix}\right]\quad

\text{Boost}_{y}(\tilde{\beta})=\left[\begin{matrix}

\cosh\tilde{\beta}&0&\sinh\tilde{\beta}&0\\

0&1&0&0\\

\sinh\tilde{\beta}&0&\cosh\tilde{\beta}&0\\

0&0&0&1

\end{matrix}\right]\quad

\text{Boost}_{z}(\tilde{\gamma})=\left[\begin{matrix}

\cosh\tilde{\gamma}&0&0&\sinh\tilde{\gamma}\\

0&1&0&0\\

0&0&1&0\\

\sinh\tilde{\gamma}&0&0&\cosh\tilde{\gamma}\\

\end{matrix}\right]\quad

[/tex]

Three spatial rotations

[tex]

\text{Rot}_{x}(\alpha)=\left[\begin{matrix}

1&0&0&0\\

0&1&0&0\\

0&0&\cos\alpha&\sin\alpha\\

0&0&-\sin\alpha&\cos\alpha\\

\end{matrix}\right]\quad

\text{Rot}_{y}(\beta)=\left[\begin{matrix}

1&0&0&0\\

0&\cos\beta&0&-\sin\beta\\

0&0&1&0\\

0&\sin\beta&0&\cos\beta\\

\end{matrix}\right]\quad

\text{Rot}_{z}(\gamma)=\left[\begin{matrix}

1&0&0&0\\

0&\cos\gamma&\sin\gamma&0\\

0&-\sin\gamma&\cos\gamma&0\\

0&0&0&1\\

\end{matrix}\right]

[/tex]

Two inversions

[tex]

I=\left[\begin{matrix}

1&0&0&0\\

0&-1&0&0\\

0&0&-1&0\\

0&0&0&-1

\end{matrix}\right]\quad

\tilde{I}=\left[\begin{matrix}

-1&0&0&0\\

0&1&0&0\\

0&0&1&0\\

0&0&0&1

\end{matrix}\right]

[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Generators for Lorentz transformations

**Physics Forums | Science Articles, Homework Help, Discussion**