I Generators of translations

redtree
Messages
335
Reaction score
15
TL;DR Summary
The relationship between the generators of translation and the representation of the Poincare group
I just want to make sure I understand this correctly.

For an infinite-dimensional representation, the generators of translation can be written as ##i \frac{\partial}{\partial_{\mu}}= i \partial_{\mu}##, where the generators of the Lorentz group can be written as ##i (x^{\mu}\partial_{\nu} - x^{\nu}\partial_{\mu})##.

However, for a finite-dimensional case, where the generators of the Lorentz group are formulated as boost and rotation matrices, the generators of translation can be written as matrices with elements ##i \delta x## in the appropriate row/column locations, where ##\delta x## denotes an infinitesimal translation in some basis of ##x##.

In other words, in finite-dimensional representation, the generators of translation are infinitesimal displacements (instead of partial derivates as in the infinite-dimensional representation).
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top