# What is Poincare algebra: Definition and 15 Discussions

The Poincaré group, named after Henri Poincaré (1906), was first defined by Hermann Minkowski (1908) as the group of Minkowski spacetime isometries. It is a ten-dimensional non-abelian Lie group, which is of importance as a model in our understanding the most basic fundamentals of physics. For example, in one way of rigorously defining exactly what a subatomic particle is, Sheldon Lee Glashow has expressed that "Particles are at a very minimum described by irreducible representations of the Poincaré group."

View More On Wikipedia.org
1. ### I Boost Generators: Physical Meaning & Observable Quantities

So, all of the generators of the Poincare group are associated with pretty well-known physical quantities. Time translation is associated with energy, space translations with momentum, rotations with angular momentum, and boosts... well, boosts are generated by the "generators of boosts". Do...
2. ### Proving Poincare Algebra Using Differential Expression of Generator

Using differential expressions for the generator, verify the commutator expression for ##[J_{\mu\nu},P_{\rho}]=i(\eta_{\mu\rho}P_{\nu}-\eta_{\nu\rho}P_{\mu})## in Poincare group Generator of translation: ##P_{\rho}=-i\partial_{\rho}## Generator of rotation...
3. ### I Poincaré algebra and quotient group

I see that the first four equations are definitions. The problem is about the dimensions of the quotient. Why does the set Kx forms a six dimensional Lie algebra?
4. ### Proof of the commutator ## [P^2,P_\mu]=0 ##

I want to make certain that my proof is correct: Since ## P^2 = P_\nu P^\nu=P^\nu P_\nu ##, then ## [P^2,P_\mu]=[P^\nu P_\nu,P_\mu]=P^\nu[P_\nu,P_\mu]+[P^\nu,P_\mu]P_\nu=[P^\nu,P_\mu]P_\nu=g^{\nu\alpha}[P_\alpha,P_\mu]P_\nu=0 ##, since ## g^{\nu\alpha} ## is just a number, I can bring it...
5. ### Poincare algebra and its eigenvalues for spinors

Homework Statement Show that for $$W^\mu = -\frac{1}{2}\varepsilon_{\mu\nu\rho\sigma}M^{\nu\rho}P^{\sigma},$$ where ##M^{\mu\nu}## satisfies the commutation relations of the Lorentz group and ##\Psi## is a bispinor that transforms according to the ##(\frac{1}{2},0)\oplus(0,\frac{1}{2})##...
6. ### I Minimum requisite to generalize Proca action

Hello guys, In 90% of the papers I've read about diferent ways to achieve generalizations of the Proca action I've found there's a common condition that has to be satisfied, i.e: The number of degrees of freedom allowed to be propagated by the theory has to be three at most (two if the fields...
7. ### Poincare Algebra -- Quick Question

Homework Statement Does ##x_p\partial_v\partial_u-x_v\partial_p\partial_u=0## Homework Equations I need this to be true to show a poincare algebra commutator. We have just shown that ##[P_u, P_v] =0 ##, i.e. simply because partial derivatives commute. Where ##P_u=\partial_u## The Attempt...
8. ### A 3dim Poincare Algebra - isl(2,R)

The Poincare algebra is given by isl(2, R) ~ sl(2,R) + R^3. What exactly does the i stand for? Thanks a lot in advance!
9. ### I Relation between Poincare matrix and electromagnetic field t

We know that Poincare matrix which is 0 Kx Ky Kz ( -Kx 0 Jz -Jy ) describes the boost and rotation is very similar to -Ky -Jz 0 Jx...
10. ### Manipulating Tensor Expressions to Derive the Poincare Algebra

Hey guys, as this is a basic QFT question, I wasn't sure to put it in the relativity or quantum section. Since this question specifically is about manipulating tensor expressions, i figured here would be appropriate. My question is about equating coefficients in tensor expressions...
11. ### Poincare Algebra from Poisson Bracket with KG Action

Homework Statement Consider the Klein-Gordan action. Show that the Noether charges of the Poincare Group generate the Poincare Algebra in the Poisson brackets. There will be 10 generators.Homework Equations \{ A,B \}=\frac{\delta A}{\delta \phi}\frac{\delta B}{\delta \pi}-\frac{\delta...
12. ### Question on the representation of Poincare algebra generators on fields

Hi, I am working through Maggiore's QFT book and have a small problem that is really bothering me. It involves finding the representation of the Poincare algebra generators on fields. I always end up with a minus sign for my representation of a translation on fields compared to Maggiore...
13. ### Galilean Algebra in the low velocity limit of Poincare Algebra (Weinberg vol 1)

Hi, Can someone please explain the following statement on page 62 of Weinberg's Vol 1 on QFT: (I understand the part for P ~ mv, so the "quote" is slightly distorted, intentionally). Also how is ? Thanks in advance!
14. ### Understanding the Dilemma: Differential Operators and the Poincare Algebra

I am facing a dilemma which leaves me quite puzzled. I hope someone can straighten this out. The short version is : when we use representations of the charges as differential operators to calculate their commutators, we always get -1 times the correct result. So, doe sthat mean that we...
15. ### Deriving the Poincare algebra in scalar field theory

Homework Statement Find the commutators [P^\sigma,J^{\mu \nu}] The answer is part of the Poincare algebra [P^\sigma,J^{\mu \nu}]=i(g^{\mu \sigma}P^\nu-g^{\nu \sigma}P^\mu) If someone can convince me that \partial_i T^{0\mu} = 0, (i.e. the energy-momentum tensor has no explicit spatial...