MHB Geometric Series with Complex Numbers

Yankel
Messages
390
Reaction score
0
Hello all,

Three consecutive elements of a geometric series are:

m-3i, 8+i, n+17i

where n and m are real numbers. I need to find n and m.

I have tried using the conjugate in order to find (8+i)/(m-3i) and (n+17i)/(8+i), and was hopeful that at the end I will be able to compare the real and imaginary parts of the ratio, but I got difficult algebraic expressions, so I figure out it's not the way. Can you assist please ?

Thanks !
 
Mathematics news on Phys.org
Yankel said:
Hello all,

Three consecutive elements of a geometric series are:

m-3i, 8+i, n+17i

where n and m are real numbers. I need to find n and m.

I have tried using the conjugate in order to find (8+i)/(m-3i) and (n+17i)/(8+i), and was hopeful that at the end I will be able to compare the real and imaginary parts of the ratio, but I got difficult algebraic expressions, so I figure out it's not the way. Can you assist please ?

Thanks !

Rather than the conjugate think about the sequence side of it instead - can you find a pair of expressions for the common ratio (and therefore equal to each other)?
 
That's what I was trying to do, to find two expressions for the ratio. I need two equations somehow.
 
Yankel said:
That's what I was trying to do, to find two expressions for the ratio. I need two equations somehow.

$r= \dfrac{8+i}{m-3i} = \dfrac{n+17i}{8+i}$

$63+16i = (mn+51)+(17m-3n)i$

$mn=12$

$17m-3n=16$

one solution for the system is $m=2$, $n=6$

there is another possible, but I'm too lazy to check.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top