MHB Geometric Series with Complex Numbers

Click For Summary
The discussion revolves around finding the real numbers n and m in a geometric series represented by the elements m-3i, 8+i, and n+17i. The user initially attempted to use the conjugate method to compare the ratios but encountered complex algebraic expressions. A suggestion was made to derive two expressions for the common ratio, leading to the equations r = (8+i)/(m-3i) and r = (n+17i)/(8+i). Solving the resulting system of equations, it was found that one solution is m=2 and n=6, with a note that another solution may exist. The conversation highlights the importance of finding equivalent expressions for the common ratio in geometric series involving complex numbers.
Yankel
Messages
390
Reaction score
0
Hello all,

Three consecutive elements of a geometric series are:

m-3i, 8+i, n+17i

where n and m are real numbers. I need to find n and m.

I have tried using the conjugate in order to find (8+i)/(m-3i) and (n+17i)/(8+i), and was hopeful that at the end I will be able to compare the real and imaginary parts of the ratio, but I got difficult algebraic expressions, so I figure out it's not the way. Can you assist please ?

Thanks !
 
Mathematics news on Phys.org
Yankel said:
Hello all,

Three consecutive elements of a geometric series are:

m-3i, 8+i, n+17i

where n and m are real numbers. I need to find n and m.

I have tried using the conjugate in order to find (8+i)/(m-3i) and (n+17i)/(8+i), and was hopeful that at the end I will be able to compare the real and imaginary parts of the ratio, but I got difficult algebraic expressions, so I figure out it's not the way. Can you assist please ?

Thanks !

Rather than the conjugate think about the sequence side of it instead - can you find a pair of expressions for the common ratio (and therefore equal to each other)?
 
That's what I was trying to do, to find two expressions for the ratio. I need two equations somehow.
 
Yankel said:
That's what I was trying to do, to find two expressions for the ratio. I need two equations somehow.

$r= \dfrac{8+i}{m-3i} = \dfrac{n+17i}{8+i}$

$63+16i = (mn+51)+(17m-3n)i$

$mn=12$

$17m-3n=16$

one solution for the system is $m=2$, $n=6$

there is another possible, but I'm too lazy to check.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K