I Geometry of Cherenkov radiation

  • I
  • Thread starter Thread starter AndreasC
  • Start date Start date
  • Tags Tags
    Geometry
AI Thread Summary
The discussion centers on understanding the Cherenkov angle θ and the role of wavefronts in its propagation. It emphasizes the need to assume that wavefronts are tangent to circles to establish the right angle between the direction of propagation and observed wavefronts. The confusion arises around the application of Huygens's Principle, particularly regarding the emission of radiation by a charge moving faster than the phase velocity in a medium. The participant grapples with why points along the tangent line represent a wavefront with the same phase, leading to a moment of clarity about the nature of radiation emitted from the electron. Ultimately, the discussion highlights the complexities of wave behavior in the context of Cherenkov radiation.
AndreasC
Gold Member
Messages
555
Reaction score
317
As an explanation to the Cherenkov angle, images such as this are offered:
Huygens-construction-of-a-conical-Cherenkov-wavefront-a-charged-particle-traveling-in-a.png

This is used to explain the Cherenkov angle θ at which the Cherenkov radiation appears to be propagating. To figure this angle out however one has to assume that the wavefronts are tangent to each of these circles, so that then the direction of propagation and the observed wavefronts have a right angle between them. I don't really get why. I think I'm missing something very obvious, and it probably has to do with interference, but I can't quite explain it.

To be more specific, take a point where that first circle meets the wavefront. If you wait just a little bit, won't the emitted radiation from the second circle reach that point? Won't it then appear to be coming from a different angle?
 
Last edited:
Physics news on Phys.org
This is using the Huygens's Principle for emission of waves with velocity ##c_{\text{mat}}=c/n## by a charge moving with a velocity larger than ##c_{\text{mat}}##.
 
vanhees71 said:
This is using the Huygens's Principle for emission of waves with velocity ##c_{\text{mat}}=c/n## by a charge moving with a velocity larger than ##c_{\text{mat}}##.
I'm not entirely sure how this applies to answer what I said in the end though... I'm also not entirely sure why all the points in that tangent line have the same phase. Perhaps that's why I'm confused.
 
Wait I see what you mean now about Huygens' principle, but where I'm stuck I guess is why these points are a wavefront, as in why do these points along this line have the same phase, but not some other ones? I think I've misunderstood the nature of radiation being emitted from the electron...
 
Oof nevermind, I was saying nonsense because I was confused. I see what you mean now, thanks!
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top