MHB Geometry Problem: Find Shaded Area Given Triangle & Inner Circle

  • Thread starter Thread starter Nono713
  • Start date Start date
  • Tags Tags
    Fun Geometry
Nono713
Gold Member
MHB
Messages
615
Reaction score
4
Here's a nice geometry problem, not hard at all if you can see what's really going on.

You are given the lengths AB, AC and BC of the triangle, as well as the distances of all three of the vertices to the triangle's circumcenter O. The inner circle is tangent to (AB). Find the shaded area.

https://lh3.googleusercontent.com/-qqF-3y81rvI/UQjt7jishKI/AAAAAAAAAII/gP8G0dgKCmc/w497-h373/cercles.gif

Solution (don't click if you want to work it out yourself!):

Let M be the midpoint of [AB]. Then (OM) is perpendicular to (AB). We know |OA|, so by Pythagoras we have:

$$|OA|^2 = |OM|^2 + |AM|^2 = |OM|^2 + \left ( \frac{1}{2} |AB| \right )^2$$

Because the inner circle is tangent to (AB) at M (as $|OA| = |OB|$) its area is:

$$A_\text{inner} = \pi |OM|^2 = \pi \left [ |OA|^2 - \left ( \frac{1}{2} |AB| \right )^2 \right ]$$

And the area of the outer circle is just:

$$A_\text{outer} = \pi |OA|^2$$

Thus the area of the shaded region is:

$$A_\text{shaded} = A_\text{outer} - A_\text{inner} = \pi |OA|^2 - \pi \left [ |OA|^2 - \left ( \frac{1}{2} |AB| \right )^2 \right ] = \pi \left ( \frac{1}{2} |AB|\right )^2 = \frac{\pi}{4} |AB|^2$$

The maximum value for $|AB|$ is clearly $2 |OA|$ when [AB] is a diameter of the circumcircle, thus $A_\text{shaded} \leqslant A_\text{outer}$.
 
Mathematics news on Phys.org
What is the meaning of "x" ,in your diagram ?

people will misunderstand that x is the center of the small

circle .

I think your solution is based on the assumption that the

two circles are concentric circles

(but your problem did not reveal this fact )

If they are not concentric circles,the solution will be much

more complicated,

(in this case point M is not on the small circle)

How do you think ?
 
Last edited:
Albert said:
What is the meaning of "x" ,in your diagram ?

people will misunderstand that x is the center of the small

circle .

I think your solution is based on the assumption that the

two circles are concentric circles

(but your problem did not reveal this fact )

If they are not concentric circles,the solution will be much

more complicated,

(in this case point M is not on the small circle)

How do you think ?

There is no "x", it's indeed just a cross indicating the centre O of the inner and outer circles. I thought that was clear enough (and the diagram is not mine). The two circles must be concentric, it follows from the fact that the outer circle is the circumcircle of the triangle (stated in the problem) and that the inner circle is clearly tangent to the midpoint of AB, by |OA| = |OB|.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top