MHB Geometry Problem: Find Shaded Area Given Triangle & Inner Circle

  • Thread starter Thread starter Nono713
  • Start date Start date
  • Tags Tags
    Fun Geometry
AI Thread Summary
The geometry problem involves finding the shaded area within a triangle given the lengths of its sides and the distances from the vertices to the circumcenter. There is some confusion regarding the diagram, particularly about the point labeled "x," which is clarified to be the circumcenter O of the circles rather than the center of the inner circle. The assumption that the inner and outer circles are concentric is crucial for solving the problem, as it simplifies the calculations. If the circles are not concentric, the solution would become significantly more complex. The discussion emphasizes the importance of accurately interpreting the diagram and the relationships between the triangle and the circles.
Nono713
Gold Member
MHB
Messages
615
Reaction score
4
Here's a nice geometry problem, not hard at all if you can see what's really going on.

You are given the lengths AB, AC and BC of the triangle, as well as the distances of all three of the vertices to the triangle's circumcenter O. The inner circle is tangent to (AB). Find the shaded area.

https://lh3.googleusercontent.com/-qqF-3y81rvI/UQjt7jishKI/AAAAAAAAAII/gP8G0dgKCmc/w497-h373/cercles.gif

Solution (don't click if you want to work it out yourself!):

Let M be the midpoint of [AB]. Then (OM) is perpendicular to (AB). We know |OA|, so by Pythagoras we have:

$$|OA|^2 = |OM|^2 + |AM|^2 = |OM|^2 + \left ( \frac{1}{2} |AB| \right )^2$$

Because the inner circle is tangent to (AB) at M (as $|OA| = |OB|$) its area is:

$$A_\text{inner} = \pi |OM|^2 = \pi \left [ |OA|^2 - \left ( \frac{1}{2} |AB| \right )^2 \right ]$$

And the area of the outer circle is just:

$$A_\text{outer} = \pi |OA|^2$$

Thus the area of the shaded region is:

$$A_\text{shaded} = A_\text{outer} - A_\text{inner} = \pi |OA|^2 - \pi \left [ |OA|^2 - \left ( \frac{1}{2} |AB| \right )^2 \right ] = \pi \left ( \frac{1}{2} |AB|\right )^2 = \frac{\pi}{4} |AB|^2$$

The maximum value for $|AB|$ is clearly $2 |OA|$ when [AB] is a diameter of the circumcircle, thus $A_\text{shaded} \leqslant A_\text{outer}$.
 
Mathematics news on Phys.org
What is the meaning of "x" ,in your diagram ?

people will misunderstand that x is the center of the small

circle .

I think your solution is based on the assumption that the

two circles are concentric circles

(but your problem did not reveal this fact )

If they are not concentric circles,the solution will be much

more complicated,

(in this case point M is not on the small circle)

How do you think ?
 
Last edited:
Albert said:
What is the meaning of "x" ,in your diagram ?

people will misunderstand that x is the center of the small

circle .

I think your solution is based on the assumption that the

two circles are concentric circles

(but your problem did not reveal this fact )

If they are not concentric circles,the solution will be much

more complicated,

(in this case point M is not on the small circle)

How do you think ?

There is no "x", it's indeed just a cross indicating the centre O of the inner and outer circles. I thought that was clear enough (and the diagram is not mine). The two circles must be concentric, it follows from the fact that the outer circle is the circumcircle of the triangle (stated in the problem) and that the inner circle is clearly tangent to the midpoint of AB, by |OA| = |OB|.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top