Geometry Problem: Find Shaded Area Given Triangle & Inner Circle

  • Context: MHB 
  • Thread starter Thread starter Nono713
  • Start date Start date
  • Tags Tags
    Fun Geometry
Click For Summary
SUMMARY

The discussion centers on a geometry problem involving a triangle with vertices A, B, and C, and an inner circle tangent to side AB. Participants clarify that the circumcenter O is the center of both the inner and outer circles, which are concentric. Misunderstandings arise regarding the notation "x" in the diagram, with some assuming it represents the center of the smaller circle. The consensus is that the circles are indeed concentric, simplifying the solution process.

PREREQUISITES
  • Understanding of triangle properties and circumcenters
  • Familiarity with tangent circles and their properties
  • Basic knowledge of geometric notation and diagrams
  • Ability to interpret and analyze geometric relationships
NEXT STEPS
  • Study the properties of circumcircles and incircles in triangles
  • Learn about the relationship between tangents and circle centers
  • Explore advanced geometric problem-solving techniques
  • Investigate the implications of concentric circles in geometric constructions
USEFUL FOR

Students of geometry, educators teaching geometric concepts, and anyone interested in solving complex geometric problems involving circles and triangles.

Nono713
Gold Member
MHB
Messages
615
Reaction score
4
Here's a nice geometry problem, not hard at all if you can see what's really going on.

You are given the lengths AB, AC and BC of the triangle, as well as the distances of all three of the vertices to the triangle's circumcenter O. The inner circle is tangent to (AB). Find the shaded area.

https://lh3.googleusercontent.com/-qqF-3y81rvI/UQjt7jishKI/AAAAAAAAAII/gP8G0dgKCmc/w497-h373/cercles.gif

Solution (don't click if you want to work it out yourself!):

Let M be the midpoint of [AB]. Then (OM) is perpendicular to (AB). We know |OA|, so by Pythagoras we have:

$$|OA|^2 = |OM|^2 + |AM|^2 = |OM|^2 + \left ( \frac{1}{2} |AB| \right )^2$$

Because the inner circle is tangent to (AB) at M (as $|OA| = |OB|$) its area is:

$$A_\text{inner} = \pi |OM|^2 = \pi \left [ |OA|^2 - \left ( \frac{1}{2} |AB| \right )^2 \right ]$$

And the area of the outer circle is just:

$$A_\text{outer} = \pi |OA|^2$$

Thus the area of the shaded region is:

$$A_\text{shaded} = A_\text{outer} - A_\text{inner} = \pi |OA|^2 - \pi \left [ |OA|^2 - \left ( \frac{1}{2} |AB| \right )^2 \right ] = \pi \left ( \frac{1}{2} |AB|\right )^2 = \frac{\pi}{4} |AB|^2$$

The maximum value for $|AB|$ is clearly $2 |OA|$ when [AB] is a diameter of the circumcircle, thus $A_\text{shaded} \leqslant A_\text{outer}$.
 
Mathematics news on Phys.org
What is the meaning of "x" ,in your diagram ?

people will misunderstand that x is the center of the small

circle .

I think your solution is based on the assumption that the

two circles are concentric circles

(but your problem did not reveal this fact )

If they are not concentric circles,the solution will be much

more complicated,

(in this case point M is not on the small circle)

How do you think ?
 
Last edited:
Albert said:
What is the meaning of "x" ,in your diagram ?

people will misunderstand that x is the center of the small

circle .

I think your solution is based on the assumption that the

two circles are concentric circles

(but your problem did not reveal this fact )

If they are not concentric circles,the solution will be much

more complicated,

(in this case point M is not on the small circle)

How do you think ?

There is no "x", it's indeed just a cross indicating the centre O of the inner and outer circles. I thought that was clear enough (and the diagram is not mine). The two circles must be concentric, it follows from the fact that the outer circle is the circumcircle of the triangle (stated in the problem) and that the inner circle is clearly tangent to the midpoint of AB, by |OA| = |OB|.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
4K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K