The following is from my notes:(adsbygoogle = window.adsbygoogle || []).push({});

In 1972, a model was proposed by Georgi and Glashow as a candidate theory describing W bosons and photons with Lagrangian $$\mathcal L = -\frac{1}{2} \text{Tr} F^{\mu \nu}F_{\mu \nu} + (D_{\mu} \phi)^T (D^{\mu} \phi) - \mu^2 \phi^T \phi - \lambda(\phi^T \phi)^2$$ with ##F_{\mu \nu}## the field strength tensor and ##A_{\mu}^a## the gauge fields of the gauge group SO(3), ##D_{\mu} = \partial_{\mu} + ig A_{\mu}^a \tau^a##, and ##\phi## is a 3 component real scalar field.

It's clear that the generator basis is ##i(\tau)_{jk} = \frac{1}{2} (\delta_{jk} - \delta_{kj})## for ##1 \leq j < k \leq 3## which may be applied to the vacuum expectation value $$\phi_{min} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 0 \\ v \end{pmatrix}$$ to deduce the number of Goldstone bosons, in accordance with Goldstone's theorem....

My question is simply, why is that a generator basis? First of all there are three generators in SO(3) so I expected to see another index on the ##\tau## to label each generator. Secondly, for any ##1 \leq j < k \leq 3## the components ##\tau_{jk}## are all identically zero (!). So clearly I am misunderstanding something here. Can anyone help?

Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Georgi-Glashow model of W bosons/photons

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**