MHB Getting a sign chart for a function

  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Function Sign
tmt1
Messages
230
Reaction score
0
I have the function

$$\frac{5(1-x)}{3x^{1/3}}$$

for which I need to find a sign chart. I know that for $x = 0$ and $x = 1$ are the inflection points, since those are the points for which the numerator and denominator will equal zero.

So, is the function positive or negative when $x < 0$, $x > 1$, and $0 < x < 1$?. I can get the values for when $x > 0$ easily enough, but what about when $x < 0$?

If I take $-1$, then
$$\frac{10}{3(-1)^{1/3}}$$

But I though for roots the radicand can't be negative?
 
Mathematics news on Phys.org
Odd roots (not to be confused with the zeroes of a function) can be negative, since the product of an odd number of negative numbers is negative. :)
 
The numerator, 5(1- x), is positive for x< 1 and negative for x> 1. The denominator, 3x^{1/3}, is negative for x< 0 and positive for x> 0. A fraction is positive as long as both numerator and denominator have the same sigh, negative if they have different signs.

For x< 0< 1, the numerator is positive and the denominator is negative.

For 0< x< 1, the numerator is still positive and the denominator is positive.

For 0< 1< x, the numerator is negative and the denominator is positive.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top