MHB Given probability density function find its cumulative distribution function

AI Thread Summary
The discussion revolves around finding the cumulative distribution function (CDF) from a given probability density function (PDF) of a random variable X. The user attempted two integration methods to derive the CDF, both involving the arctangent function. The correct CDF is identified as (2/π)arctan(x) + 1/2, with a note on a minor error in the closing parenthesis in the user's second attempt. The forum members confirm that the second method is the appropriate approach for determining the CDF. The conversation highlights the importance of careful notation in mathematical expressions.
sofanglom
Messages
1
Reaction score
0
Hi :) Here's my problem along with what I've done.

Here is the problem:

View attachment 8716

That is the p.d.f. of a random variable X.

I have to find the cdf. I don't know which I should do so I tried it two ways. First:

$\int_{-1}^{1} \ \frac{2}{\pi(1+x^{2})} dx = {{\frac{2}{\pi} arctan(x)]}^{1}}_{-1}=1$

Second:

$\int_{-1}^{x} \ \frac{2}{\pi(1+t^{2})} dt = {{\frac{2}{\pi} arctan(x)]}^{x}}_{-1}=\frac{2(arctan(x)+\frac{\pi}{4}}{\pi}$

Which one is the required CDF for X?
 

Attachments

  • save.PNG
    save.PNG
    1.6 KB · Views: 95
Mathematics news on Phys.org
Hi, and welcome to the forum!

Which one is the required CDF for X?
The second one, except for the missing closing parenthesis. That is, the CDF is $\dfrac{2}{\pi}\arctan x+\dfrac12$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top