MHB Given sequences, finding the relation

Click For Summary
The discussion revolves around comparing the sequences defined as \( a_n = (1^2 + 2^2 + \ldots + n^2)^n \) and \( b_n = n^n(n!)^2 \). The initial approach suggests rewriting \( a_n \) for easier comparison, but the user expresses uncertainty about the next steps. A suggestion is made to compare specific values, such as \( a_2 \) and \( b_2 \), to eliminate options regarding their relationship. Another participant proposes using the AM-GM inequality as a quicker method to determine the relationship between the sequences. Ultimately, the discussion highlights the complexity of comparing these sequences and the utility of mathematical inequalities in solving such problems.
Saitama
Messages
4,244
Reaction score
93
Problem:
Define $a_n=(1^2+2^2+ . . . +n^2)^n$ and $b_n=n^n(n!)^2$. Recall $n!$ is the product of the first n natural numbers. Then,

(A)$a_n < b_n$ for all $n > 1$
(B)$a_n > b_n$ for all $n > 1$
(C)$a_n = b_n$ for infinitely many n
(D)None of the above

Attempt:
The given sequence $a_n$ can be written as
$$a_n=\frac{n^n(n+1)^n(2n+1)^n}{6^n}$$
But I am not sure what to do now. I understand that this is a very less attempt towards the given problem but I really have no clue how someone should go about comparing these kind of sequences. Please give a few hints.

Any help is appreciated. Thanks!
 
Last edited:
Mathematics news on Phys.org
Start by comparing $$a_2$$ and $b_2$ this will eliminate one of the first two inequalities . Then proceed by induction.
 
ZaidAlyafey said:
Start by comparing $$a_2$$ and $b_2$ this will eliminate one of the first two inequalities . Then proceed by induction.

Thanks ZaidAlyafey but I seem to have figured out a better solution. Use of AM-GM inequality gives the answer in a few seconds. :)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K