Given value of vectors a,b, b.c and a+(b×c), Find (c.a)

AI Thread Summary
The discussion revolves around a vector problem involving the equations a + (b × c) = 0 and the need to find (c · a). The initial approach leads to the conclusion that c · a = 0, but this contradicts the given answer of 10. Participants highlight a contradiction in the problem statement, noting that if a + (b × c) = 0, then a must be perpendicular to b, which is not the case based on their calculations. The conversation suggests that the problem may have been poorly formulated, leading to confusion and incorrect assumptions. Overall, the thread emphasizes the complexities and potential errors in vector problems presented in exams.
Aurelius120
Messages
269
Reaction score
24
Homework Statement
##a=\hat i-2\hat j+3\hat k## and ##b=\hat i+\hat j+\hat k##
##c## is a vector such that ##a+(b\times c)=0## and ##b.c=5##
Find ##3(c.a)##
Relevant Equations
$$(p\times q)\times r=(p.r)q-(q.r)p$$
20240126_040054.jpg

I thought this was too easy
$$a+(b\times c)=0\implies a=-(b\times c)=(c\times b)$$
Then
$$3(c.a)=3(c.(c\times b))=0$$
Since cross product of vectors is perpendicular to both vectors and dot product of perpendicular vectors is zero.

Now here's the problem, correct answer given is 10. But how do I get that?Why is my answer wrong?
It seems to hint at using vector triple product
 
Last edited:
Physics news on Phys.org
I crack my head to find why your method is wrong, but I find indeed 10 IF I use another method where I take the triple cross product ##a\times(b\times c)=0## (you can deduce this equation by taking the cross product with ##a## of the given equation.
 
Well the problem statement has a contradiction, it gives as ##a## clearly different than the zero vector, but it also gives that ##a+(b\times c)=0## from which you can deduce that either a is zero or that a is perpendicular to b (and perpendicular to c), neither can hold according to what is given for a and b.

Anyway that's what I concluded with my internal thinking but lets wait what @Orodruin or @pasmith have to say for this, two of the advisors that almost always find a "jet" and rigorous explanation.

@PeroK too plz have a look at this.
 
There is an obvious self-contraction in the problem statement. From ##\vec a + \vec b \times \vec c = 0## it is necessary that ##\vec a \perp \vec b## but the given ##\vec a## and ##\vec b## are not perpendicular by virtue of ##\vec a\cdot \vec b = 1-2+3 = 2 \neq 0##.
 
  • Like
Likes MatinSAR, PeroK and Delta2
Orodruin said:
There is an obvious self-contraction in the problem statement. From ##\vec a + \vec b \times \vec c = 0## it is necessary that ##\vec a \perp \vec b## but the given ##\vec a## and ##\vec b## are not perpendicular by virtue of ##\vec a\cdot \vec b = 1-2+3 = 2 \neq 0##.

Delta2 said:
Well the problem statement has a contradiction, it gives as ##a## clearly different than the zero vector, but it also gives that ##a+(b\times c)=0## from which you can deduce that either a is zero or that a is perpendicular to b (and perpendicular to c), neither can hold according to what is given for a and b.

Anyway that's what I concluded with my internal thinking but lets wait what @Orodruin or @pasmith have to say for this, two of the advisors that almost always find a "jet" and rigorous explanation.

@PeroK too plz have a look at this.
😱
And this was a 'Previous Year Question' in an exam. They tried too hard to make it difficult.
[Attachment missing. Link removed by moderator]
This solution that gives 10.
 
Last edited by a moderator:
It is not the first and not the last time someone makes a mistake when formulating an exam.

My favourite was when our classical mechanics teacher asked us to find the natural frequency of oscillations around a stable equilibrium that was, in fact, unstable. The rest of the class got imaginary frequencies. I showed that the equilibrium was unstable, found the actual stable equilibrium of the system (which was significantly more complex), and found the frequency for that equilibrium. I got 6 out of 3 points for that problem. 😂
 
  • Like
  • Informative
Likes SammyS, Aurelius120, MatinSAR and 2 others
I picked up this problem from the Schaum's series book titled "College Mathematics" by Ayres/Schmidt. It is a solved problem in the book. But what surprised me was that the solution to this problem was given in one line without any explanation. I could, therefore, not understand how the given one-line solution was reached. The one-line solution in the book says: The equation is ##x \cos{\omega} +y \sin{\omega} - 5 = 0##, ##\omega## being the parameter. From my side, the only thing I could...
Back
Top