GL(2;C) is the group of linear transformations on C^2

Click For Summary
GL(2;C) consists of all invertible 2x2 matrices with non-zero determinants, and it is not simply connected due to a homomorphism mapping elements to their determinants. The discussion revolves around finding the universal covering group of GL(2;C), with hints suggesting that it should relate to the universal cover of C*, which is shaped like the graph of the complex logarithm. The exponential map from C to C* is identified as a potential link to the universal cover, although it is noted that the matrix exponential from M(2,C) to GL(2,C) does not form a group homomorphism. The conversation highlights the complexity of determining universal covering groups in this context.
eddo
Messages
48
Reaction score
0
Incase anyone doesn't understand the notation, GL(2;C) is the group of linear transformations on C^2 which are invertible. Another way of looking at it is all complex 2x2 matrices with non-zero determinant.

It is fairly easy to show that GL(2;C) is not simply connected (just define a homomorphism that maps an element to its determinant). So here's my question. If it is not simply connected, than what is its universal covering group? All the textbooks I've looked at give many examples of universal covering groups but they never give you any sort of strategy of how to find one, so I have no idea where to start. Anyone know the answer, or have any hints so I can try to figure it out? Thanks
 
Last edited:
Physics news on Phys.org
There might not be an easy answer. e.g. Wikipedia's page on covering groups indicates that the universal cover of SL(2, R) isn't a matrix group!

If I had to guess, I think the homomorphism you mention gives a big hint. The determinant is a map
GL(2, C) --> C*
so the universal cover of GL(2, C) has to have a morphism to the universal cover of C*. (I think)

You've probably seen the universal cover of C*; I'm pretty sure it's a corkscrew shape: the graph of the (multivalued) complex logarithm function. Happily, we can unwind it and get that the universal cover is the exponential map
exp:C-->C*.​
(C viewed as an additive group)

So, if I had to guess, I would claim that the (matrix) exponential
exp:M(2,C)-->GL(2,C)​
is related to the universal cover. (M(2,C) viewed as an additive group) Alas, this isn't a group homomorphism. :frown:
 
Last edited:
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • Poll Poll
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 17 ·
Replies
17
Views
6K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 27 ·
Replies
27
Views
3K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K