GR Lagrangian Part 2 Homework Statement Solution

  • Thread starter Thread starter Malamala
  • Start date Start date
  • Tags Tags
    Gr Lagrangian
Click For Summary
The discussion focuses on solving a second-order equation of motion derived from a simplified Lagrangian density related to the Einstein gravity tensor. The user has successfully calculated the first-order solution for h but is confused about the second-order term, h1, and whether a function f(x) can be discarded in the equations of motion. They express concern that h1, which is proportional to h0 squared, appears to be larger than h0, contradicting the expectation that second-order corrections should be smaller. The user seeks clarification on the validity of their approach and calculations, particularly regarding the assumptions made about the smallness of terms in the context of gravitational effects on Mercury's orbit. The thread highlights the complexities of working with higher-order corrections in quantum field theory and general relativity.
Malamala
Messages
348
Reaction score
28

Homework Statement


This is a continuation of this problem. I will rewrite it here too:
The Lagrangian density for the ##h=h^{00}## term of the Einstein gravity tensor can be simplified to: $$L=-\frac{1}{2}h\Box h + (M_p)^ah^2\Box h - (M_p)^b h T$$ The equations of motion following from this Lagrangian looks roughly like (I didn't calculate this, they are given in the problem): $$\Box h = (M_p)^{a}\Box(h^2)-(M_p)^bT$$ For a point source ##T=m\delta^3(x)##, solve the equation for h to second order in the source T, with ##M_p=\frac{1}{\sqrt{G_N}}## and calculate the correction to the Mercury angular frequency orbit around the sun compared to the first order approximation.

Homework Equations

The Attempt at a Solution


Continuing the same logic as before I write $$h=h_0+h_1+h_2...$$ where ##h_0## is first order in T, ##h_1## is second order and so on. Before, I got for the first order $$h_0=-\frac{M_p^b m }{4 \pi r}$$ Now if we go to the second order, the equation we need to solve is: $$\Box h_1 = (M_p)^a\Box(h_0^2)$$ which is equivalent to $$\Box (h_1 - (M_p)^a h_0^2) = 0$$ $$h_1 = (M_p)^a h_0^2 + f(x)$$ where ##f(x)## is such that ##\Box f = \nabla f = 0## (I replaced ##\Box## with ##\nabla## as the source is time independent). Is it ok up to now? Now first thing I am confused about, can I discard this ##f##? in the equation of motion it seems like ##h## appear with ##\Box## so I think f will not affect the equations, but I am not 100% sure this is true. Now for the orbit, to first order I used $$m_{Mercury}\omega^2 r = \frac{m_{Mercury}}{M_p}(-\nabla h_0)$$ where that ##M_p## comes from the normalization (as I was told in the first post). And from here I got the first order approximation for ##\omega##. For the second order, I tried the same thing (this is QFT class, so I don't think I am expected to use GR, and they ask for a rough approximation, anyway) $$m_{Mercury}\omega^2 r = \frac{m_{Mercury}}{M_p}(-\nabla (h_0+h_1))$$ However something is wrong as the correction should be very small, however, ##h_1## going like ##h_0^2##, contains ##m^2## which here m is the mass of the sun so overall, the value of ##h_1## is bigger than ##h_0## which doesn't make sense for a second order correction. What is wrong with my calculations? Thank you!
 
Physics news on Phys.org
Since ##h_0 \ll 1##, clearly ##h_0^2 \ll h_0##.
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K